
A Joint Human/Machine Process for Coding
Events and Conflict Drivers

Bradford Heap1, Alfred Krzywicki1, Susanne Schmeidl2, Wayne Wobcke1 and
Michael Bain1

1School of Computer Science and Engineering
2School of Social Sciences

University of New South Wales
Sydney NSW 2052, Australia

{b.heap,alfredk,s.schmeidl,w.wobcke,m.bain}@unsw.edu.au

Abstract. Constructing datasets to analyse the progression of conflicts
has been a longstanding objective of peace and conflict studies research.
In essence, the problem is to reliably extract relevant text snippets and
code (annotate) them using an ontology that is meaningful to social scien-
tists. Such an ontology usually characterizes either types of violent events
(killing, bombing, etc.), and/or the underlying drivers of conflict, them-
selves hierarchically structured, for example security, governance and
economics, subdivided into conflict-specific indicators. Numerous coding
approaches have been proposed in the social science literature, ranging
from fully automated “machine” coding to human coding. Machine cod-
ing is highly error prone, especially for labelling complex drivers, and
suffers from extraction of duplicated events, but human coding is ex-
pensive, and suffers from inconsistency between annotators; thus hybrid
approaches are required. In this paper, we analyse experimentally how
human input can most effectively be used in a hybrid system to comple-
ment machine coding. Using two newly created real-world datasets, we
show that machine learning methods improve on rule-based automated
coding for filtering large volumes of input, while human verification of
relevant/irrelevant text leads to improved performance of machine learn-
ing for predicting multiple labels in the ontology.

1 Introduction

Identifying and tracking drivers of conflict in order to anticipate the outbreak
of violence has been an elusive challenge for social science. The field of peace
and conflict studies suffers greatly from the lack of reliable quantitative data
on societal and political factors and events which are more abstract than the
basic information typically collected for armed conflicts, such as individual battle
statistics. This limits the ability of analysts to develop effective and general
conflict analyses and early warning models [3].

A serious problem is that, even when data is collected, it needs to be stored
in a form that analysts can later search and use to analyse the long-term progres-
sion of a conflict. The idea is to code the data by annotating relevant information

with concepts from a pre-defined ontology [15, 10]. Abstract concepts in the on-
tology are designed to capture what analysts consider to be important for making
sense of the many individual events or factors involved in an extended conflict.
Moreover, useful information can originate from a variety of sources and be of
a variety of types. At one extreme, long and complicated formal analyst reports
can provide historical context and in-depth analysis, often focusing on underly-
ing conflict drivers (structural and causal factors contributing to the progression
of a conflict). At another extreme, news and social media can provide timely and
useful information (and also misinformation) on a daily basis, typically reporting
many isolated events (such as individual battles, attacks, deaths, gains/losses of
territory) that need to be classified for future analysis.

During the past two decades, much progress has been made in automating
event coding through the development of systems that apply term dictionaries
and syntactic rules to automatically filter text content and extract actors, ac-
tions, places and times related to an event [4, 3, 7]. However, while this machine
extracted information is more suited for studies that involve the consolidation of
event statistics, the coding is typically less sophisticated than human analysts
require for conflict analysis [10]. Automated event coding methods are error-
prone and suffer from the problem of extracting the same event multiple times
(duplicated events). On the other hand, human coding is expensive and time-
consuming, which means information is not up to date, and datasets suffer from
disagreement between coders as to how best to characterize an event or fact
(this disagreement is sometimes legitimate, as “coding” is subject to interpreta-
tion and made on the basis of background knowledge that may differ amongst
experts). Thus hybrids of human and machine coding systems are required to
balance the accuracy and complexity of coding with the timeliness and coverage
of the events and factors involved in a conflict.

In this paper we empirically analyse a proposed hybrid human/maching cod-
ing process. We study two different conflict domains, which, while different in
the type of document sources and the information to be extracted and coded,
nevertheless are similar in the requirements to: (i) identify the small amount
of relevant text from a large volume of input, and (ii) code (annotate) the rel-
evant text using concepts from a (possibly) domain-specific ontology. As part
of our work, we have developed two new datasets that may be of independent
interest to social scientists studying those conflicts. The specific conflicts are the
long and ongoing “cycles” of violence in the Democratic Republic of the Congo
(DRC) during the period 2002–2006 (before the outbreak of violence surrounding
the presidential elections), and the long-running war in Afghanistan, focusing on
events reported in news sources in 2016 (which we have called the AfPak dataset,
following common usage of this term to denote Afghanistan/Pakistan). The basic
approach to the experiments is that, given a “ground truth” dataset constructed
by human expert coders, we mimic the performance of a hypothetical joint hu-
man/machine coding process, to determine where, in the future, human input
is best utilized. Considering the two-step process of determining relevance and
coding, we simulate the effect of using human input at each step to refine the

output of the system at that stage. This enables us to determine the specific
strengths and weaknesses of a variety of machine learning methods, on the in-
dividual steps and in combination. Our results show that human input at the
stage of identifying relevance can greatly improve the overall performance of the
system (in terms of precision and recall), and that machine learning is most
effective in identifying a small number of concepts from the ontology for using
in coding, from which a human can select the best one(s).

We begin the paper with a more detailed description of coding, including
the construction of our ontologies and datasets, then present a formalization
of document coding as a machine learning problem, and finally describe our
proposed process for joint human/machine coding and the experimental results
forming the evaluation of the process.

2 Coding of Events and Conflict Drivers

In essence, coding requires both the development of a coding scheme or ontology,
and a systematic coding process specifying how to apply coding rules to extracted
data for inclusion in a dataset [15]. Note here that the “coding rules” are typically
meant for human use, so may be incomplete or open to interpretation.

Historically, the ontologies of the World Event/Interaction Survey (WEIS) [8]
and the Conflict and Peace Databank (COPDAB) [1] have been used for large
scale human coding in developing conflict datasets. While the largest coding
projects, such as the Global Database of Events, Language, and Tone (GDELT)
[7] have now become fully automated there are still some projects which are
entirely human coder based [6, 11].

2.1 Ontologies for Events and Conflict Drivers

The development of any coding scheme requires expert domain knowledge and
careful consideration of what data to code to ensure the coding process results
in a high quality and accurate dataset. Numerous coding schemes have been
developed, originally focused on international relations [8, 1], and later expanded
to include domestic relations and local events [3, 15, 5, 11].

Generally, coding ontologies are hierarchical and information can be classi-
fied at different levels of the hierarchy. Ontologies for events are simpler than for
conflict drivers (see below) because the ontology takes the form of a type hier-
archy. As our objective is to code events relating to the conflict in Afghanistan,
we adapted the basic CAMEO ontology [5], focusing on violent events (attacks,
killings, etc.) and statements (public announcements, claims of responsibility,
etc.). Figure 1 shows part of our event type ontology. Note that with this coding
scheme, events can be classified at the “top level” only, e.g. if an event is an
attack but not one of the subtypes of attack specified in the hierarchy. Note also
that some of the concepts are domain specific, due to the nature of the conflict
in Afghanistan (such as suicide bombing), though the aim is make the ontology
as domain independent as possible.

– Attack
• Drone strike
• Suicide bombing
• · · ·

– Kill
• Behead
• Kill civilians
• · · ·

– Make a public statement
• Claim responsibility
• · · ·

Fig. 1. AfPak Event Type Ontology

The ontology for conflict drivers focuses on factors (which could include
events) that contribute causally to an ongoing conflict. One way to characterize
conflict drivers is in terms of structural causes or root causes (pervasive factors
or grievances that have become entrenched in a society and create the precon-
ditions for violent conflict), proximate conditions or intervening factors (factors
contributing to a climate conducive to violent conflict or its further escalation
that are under more direct control), and triggers (single key acts or events that
set off or escalate violent conflict).

Many existing machine-based coding ontologies consider only the extraction
of events and ignore structural causes and proximate conditions, which, even for
an expert human coder, can be difficult to extract [3]. But by coding only events,
the resulting datasets may have inherent biases [14]. In contrast, our ontology
includes drivers at multiple layers of abstraction.

The drivers for the Democratic Republic of the Congo (DRC) dataset are
characterized as a three-level hierarchy of pillars, categories and indicators. Pil-
lars capture the basic objectives of peacebuilding, including economics, gover-
nance, rule of law and security. The indicators cover dynamic conditions such as
economic decline and external influence. Indicators are grouped into categories,
such as human rights and internal stability, which are aspects of the associated
pillar. Thus the hierarchy is not a simple type or part-whole hierarchy but a
collection of abstract concepts some of which involve causal relations (e.g. cross
border aggression causes (a decrease in) internal security which in turn is an
aspect of security). Nonetheless, each indicator is associated with exactly one
category and each category with exactly one pillar.

2.2 Datasets

In our work we have developed two new datasets. We describe first a dataset
of events reported in news sources on Afghanistan and Pakistan (AfPak), then
describe that based on conflict drivers extracted from analyst reports on the
Democratic Republic of the Congo (DRC).

0

200

400

600

N
um

be
r

of
 T

ex
t S

ni
pp

et
s

Pillar

Economics

Governance

Rule of Law

Security

Raw Text Snippet Frequency sorted by Largest to Smallest Class

Fig. 2. Frequency distribution by category of text snippets in the ICG DRC dataset

AfPak Events Dataset This dataset focuses purely on single events of the
form “who did what to whom and where”. The ontology extends CAMEO [5] to
include not only event types, as described above, but Afghanistan-specific indi-
viduals, organizations, locations, and types of equipment. In total, the ontology
contains 441 individuals, 155 organizations, 708 locations and 7 types of equip-
ment. The ontology includes 119 event types, making event coding a difficult
problem for human and machine. The experiments in this paper use online news
articles in English from local and international media, and NGO and extremist
group sources; data is from August, October and November 2016.

To develop the dataset, human coders extracted events that could map to
the ontology, and with each event, where possible, identified actors, targets and
locations, and a snippet of text specifically expressing the event type. In total,
human coders read over 6,500 webpages containing more than 112,000 sentences,
and extracted a total of 1,478 events which were mapped to 72 top-level event
types (lower level event types are not considered in this paper, due to the lack of
instances). The low ratio of extracted events to the number of sentences reflects
the amount of filtering required to determine the relevant sentences.

ICG DRC Dataset This dataset contains “text snippets” (short fragments of
text) extracted from 15 International Crisis Group (ICG) reports on the DRC
during the period 2002–2006, annotated with indicators, categories and pillars
from the ontology. Social science domain experts had full control over the cre-
ation of the ontology, coding rules and extraction of driver related text snippets
included in the dataset. An ontology was defined before coding commenced, with
minor adjustments made during the coding process. The final ontology contains
70 indicators, 17 categories and the 4 pillars. To construct the dataset, a domain
expert read 8,836 sentences across the 15 reports, extracted 2,541 text snippets,
and used 68 of the 70 indicators. The analysis in this paper is at the level of
categories, as many indicators have very few examples in the data.

Figure 2 shows the distribution of assigned categories in the ICG DRC
dataset, showing (as typical in this research field) the highly imbalanced na-
ture of the dataset. Here the top 4 categories are all related to the security
pillar, as the data includes much information on fighting between militia groups
in various parts of the country over the period.

Document
Sentences
Filtered

Sentences
Classified

Sentence
Filter Model

Sentence
Classification

Model

Fig. 3. Automated Machine Coding Process

3 Document Coding as a Machine Learning Problem

As outlined above, document coding is a two step process: (i) identifying relevant
information (events or driver related text, for now assumed to be sentences), and
(ii) coding the extracted information by annotating it with concepts from the
ontology. An overview of an automated coding process is shown in Figure 3,
where the process uses two models, a sentence filtering model for determining
relevant information, and a sentence classification model for the coding.

Formally, we define a document D in its simplest form as simply a sequence
of tokens D = [t0, t1, . . .], where a token t is defined to be a word (individual
or compound) or punctuation symbol. We then define a text snippet S as a
(not necessarily contiguous) subsequence of tokens S v D, and a sentence to
be a maximal text snippet that is a contiguous subsequence of D, ends with
a punctuation symbol indicating the end of a sentence, such as ‘.’ or ‘?’, and
which, apart from this token, is grammatically correct. We can then reasonably
assume that a text document D consists of a sequence of sentences (though also
contains headings, footnotes, image captions, etc.).

Thus each text snippet S is a subsequence of the document’s token sequence
S = [t0, t1, . . .], however there is no guarantee that a text snippet forms a fully
parsable sentence, and moreover, text snippets can cross sentence boundaries,
and may not even be contiguous subsequences of the tokens in the document.

We now define the step of identifying relevant information as classifying a sen-
tence as relevant by use of a classification function fr : S → R, where S is the set
of all sentences and R = {relevant,not relevant}. If a sentence is classified as rel-
evant, the second step of the process is to assign to it one or more concepts from
the ontology. Thus importantly, coding is a multi-label classification problem.
More formally, if the ontology is taken as the set of concepts C = {c0, c1, . . .},
the classification of a sentence is defined by a function fc : S → 2C , where
obviously, if S is not a relevant sentence, fc assigns S the empty set of concepts.

3.1 Automated Sentence Extraction and Classification

As with the construction of a human coding scheme, an automated text ex-
traction and classification system (Figure 3) requires information about relevant
sentences and how to extract them. There is commonality with the human pro-
cess, since the same classification labels are applied to the extracted sentences.

However, where the human process requires the creation of a codebook and min-
imal set of examples, the machine process either requires a set of structural rules
(c.f. [14]) or many examples per class to learn a model (c.f. [10]). This require-
ment of many training examples is problematic for rare events and events whose
interpretation depends on context or background knowledge.

Once a coding scheme has been developed, models can be built to classify
sentences. In most existing machine-based text extraction and classification sys-
tems for conflict analysis, there is a reliance on the direct matching of the text
to the concepts in the coding ontology.

Machine-based sentence extraction and classification approaches are much
quicker and cheaper than human systems. Once a model is developed, it can
run continuously and will be consistent in its performance [14]. However, these
systems are much less flexible than human coding systems. In particular, special
cases are hard to handle and classification errors are often quite “far” from the
correct classification [15]. Furthermore, many machine-based coding systems are
unable to recognise new terms and phenomena [14], and models which are built
based on assumptions about the distribution of events may perform poorly if
that distribution changes.

The continued reliance on rule-based pattern matching in these systems is
contrary to most trends in classification systems. In other domains, the super-
vised machine learning approaches of Multinomial Naive Bayes (MNB) and Sup-
port Vector Machines (SVM) have largely superseded rule-based systems [16].

4 A Joint Human/Machine Coding Process

Human and machine coding processes have different strengths and weaknesses.
While machine coding processes are always consistent in their rule and pattern
matching, this also forms part of their Achilles’ heel. In contrast, a human coder
can easily adapt to changes in language expression, use and terminology. A joint
human/machine coding process should be designed to take advantage of the
consistency of machine-based coding and also allow a human coder to correct
errors or add information missed by the automated process. Although this joint
process will be many times slower than a fully automated process, the overall
quality of the data extracted should be higher, allowing for much richer analysis.
In summary, the key benefit of a hybrid approach is to enable a machine to
perform the mundane tasks of identifying possible sentences containing events,
but with human verification. This prevents the human from missing events,
and also allows the human to help the system classify rare events, or correct
misclassifications.

Figure 4 outlines the steps in our joint human/machine process. The key dif-
ference between this joint process and the fully automated machine-based process
is the inclusion of the human coder after the extraction of relevant sentences.
This allows the human coder to discard any incorrectly identified sentences, and
to select a shorter text snippet from the sentence containing the the tokens that
the human coder judges to be sufficient to determine the correct classification.

Document Sentences Filtered
Sentences
Classified

Sentence
Filter Model

Sentence
Classification

Model

Human coder
confirms each

relevant/irrelevant
classification

Human coder
extracts text
snippet from

relevant sentence

Human accepts
or corrects

classification

Fig. 4. A Joint Human/Machine Coding Process

Finally, after the machine classifies the sentence (possibly using only the text
snippet), the human coder can accept or change the classification. This optional
step allows the system to present to the human coder a list of the most relevant
potential classification labels, from which the human selects the correct labels.

4.1 Development and Evaluation of Sentence Extraction Models

Both the automated and joint coding processes involve a common step of extract-
ing the relevant sentences. Although all the above-mentioned event extraction
systems approach this problem using patterns based on NLP parsing, we propose
using supervised machine learning for this task.

The two human-annotated datasets described in Section 2.2 give us a way to
evaluate approaches for the extraction of relevant sentences. Our first evaluation
involves identifying if a sentence is relevant in the AfPak dataset, and our second
on the ICG DRC dataset. As the AfPak dataset is primarily based on news
reports and is coded according to an extension of the CAMEO coding scheme, we
are also able to compare supervised machine learning models to the PETRARCH
Coding System.1

In comparing supervised machine learning approaches to PETRARCH, we
expect some differences in performance. First, we expect similar or better levels
of recall in the supervised machine learning models compared to PETRARCH,
because the supervised machine learning models operate independently of pars-
ing rules and, given that the data were coded by human coders, we expect that
the human coders did not consciously follow a subject-verb-object pattern of
text extraction. Second, we expect that PETRARCH will identify many non-
relevant events, since it is designed to extract events related to many areas of
the world, not specifically Afghanistan/Pakistan.

1 PETRARCH2, the most recent release, was used in our experiments
(http://github.com/openeventdata/petrarch2).

Evaluation Methodology In our analysis, we use the standard metrics of re-
call and precision to measure model performance. These metrics are defined as:

recall =
tp

tp + fn
precision =

tp

tp + fp
where tp is the number of true positives, i.e., the number of sentences correctly
classified as relevant, fn the number of misclassifications of relevant sentences as
irrelevant, fp the number of irrelevant sentences incorrectly classified as relevant,
and tn the number of irrelevant sentences correctly classified as irrelevant.

Ideally, a sentence extraction system should produce results which have both
high recall and high precision. However, in practice models with high recall
are also likely to produce many irrelevant sentences; for instance, a model coul
achieve perfect recall if it marks every sentence as relevant. In contrast, models
with high precision are likely to have lower recall, since they only suggest relevant
sentences in which they have high confidence.

For the joint human/machine coding system, we focus primarily on obtaining
good recall, with a secondary focus on precision. This is warranted since, in
validating the output of sentence extraction, when a human is shown an incorrect
label for a sentence they can easily reject it, but when shown a sentence missing
a correct label, they are likely to take longer to identify the relevant content and
determine its correct classification.2 Additionally, to capture variation between
methods in the balance of the number of irrelevant sentences classified as relevant
(false positives) and the number of relevant sentences not marked as relevant
(false negatives), we also calculate the F1 score (the harmonic mean of recall
and precision).

For evaluation, we split the AfPak dataset into a training set containing
65% of the articles and a test set the remaining 35%. Articles were presented to
our human coders in chronological order, so the training/test split followed the
same ordering. The training set contains the first 4,892 articles annotated by
our human coders, of which 1,004 sentences (1.26%) are marked as relevant and
78,503 sentences as irrelevant. The test set contains 2,625 articles of which 362
sentences (0.84%) are relevant and 42,640 sentences are irrelevant. We followed
the approach of Bagozzi and Schrodt [2] and reduced our dataset to contain
only the first 6 sentences of each article. After this reduction, the training set
contained 931 relevant sentences (3.95%) and 22,657 irrelevant sentences, and
the test set 352 relevant sentences (2.92%) and 12,075 irrelevant sentences.

We compare four approaches for identifying relevant sentences. The first, as
a baseline, is Schrodt’s PETRARCH system in its default form. The second and
third are variants on Multinomial Naive Bayes (MNB). The fourth is a widely-
used implementation of the Support Vector Machine (SVM) algorithm. For the
ICG DRC dataset, we cannot apply PETRARCH, but we used the same three
learning algorithms, and applied 10-fold cross validation.

Multinomial Naive Bayes The MNB classifier [9] is a simple probabilistic
classifier in which each token in the text is treated as conditionally independent,

2 This appears in timings in our log files and was explicitly stated by one of our coders.

Table 1. Sentence Extraction - AfPak Dataset (Time-ordered Train/Test Split)

tp fn fp tn Recall Precision F1

PETRARCH 141 211 1,559 10,498 0.401 0.083 0.138

MNB 213 139 766 11,309 0.605 0.218 0.321

MNB-UP 252 100 1,303 10,772 0.716 0.162 0.264

SVM 156 196 172 11,903 0.443 0.476 0.459

Table 2. Sentence Extraction - ICG DRC Dataset (Mean 10-fold Cross Validation)

tp fn fp tn Recall Precision F1

MNB 124.8 92.4 113.0 553.4 0.575 0.525 0.549

MNB-UP 155.0 62.2 188.3 477.7 0.714 0.452 0.554

SVM 98.4 118.8 93.2 572.8 0.453 0.514 0.482

given the class. The conditional probability of a given token for a particular
class is calculated using Laplace smoothing. We also use a version of MNB
where we assume uniform priors (MNB-UP). This allows us to account for the
heavy skew towards sentences being marked as irrelevant (c.f. [12, 13]). In both
models, before training and testing we apply the common pre-processing steps of
removing stop words, stemming words using the Porter stemmer and removing
words which only occur once in the training set.

Support Vector Machines SVM classifiers are widely-used as an alterna-
tive to Naive Bayes for classifying text documents [16]. We build SVM models
using Weka’s3 implementation of the Sequential Minimal Optimization (SMO)
algorithm and our best models were produced without any text pre-processing.

AfPak Dataset Evaluation Table 1 shows the results of our comparison of
the models at identifying relevant sentences. The results show the limitation
of the rule and pattern based approach as used by PETRARCH compared to
machine learning. More than half the relevant sentences are not extracted by the
PETRARCH system, and the best machine learning method showed a more than
3-fold improvement on its F1 score. Since we are using PETRARCH in its default
form, there are several possible reasons for this. First, it may be discarding
potentially relevant sentences as they do not match to known actors and locations
in its dictionaries. Second, the form of the human annotated sentences may not
match the forms it is configured to detect. Third, it may be discarding sentences
which it is not able to classify according to the expanded form of the CAMEO
ontology we used for annotatation. Although these issues could potentially be
addressed by adding more rules and knowledge to the system, this illustrates
the limitations of applying PETRARCH in domains differing from its “who did
what to whom” definition of events.

3 http://www.cs.waikato.ac.nz/ml/weka/

In comparison, the supervised machine learning methods obtained higher
levels of recall and precision. The MNB models had the best recall, and the
SVM achieved highest precision. This is interesting as their performance in other
domains is generally very evenly matched [16, 12]. Furthermore, despite the low
precision obtained by the MNB-UP classifier, it still correctly eliminated 89% of
all irrelevant sentences which is a large aid to a human analyst.

ICG DRC Dataset Evaluation Table 2 presents the results of our evaluation
of the various models for identifying relevant sentences in the ICG DRC dataset.
In this dataset, we used the models to classify all sentences, as relevant sentences
were spread throughout the reports. However, we do not compare the machine
learning models to the PETRARCH system as this dataset is not coded according
to a CAMEO based ontology. These results show that recall for each of the
classifiers in identifying relevant sentences is very similar to the results on the
AfPak dataset. For the MNB models, precision is much higher than the AfPak
dataset, which is possibly a consequence of the dataset containing a much higher
proportion of relevant sentences.

4.2 Human Filtering of Relevant Sentences

After sentences have been classified as relevant or irrelevant, as in Figure 4, a
human coder is able to validate the output. To evaluate the relative contribution
of a “human-in-the-loop” versus the automated process in removing irrelevant
sentences, we simply assume the human coder eliminates any false positive clas-
sifications, resulting in maximum precision. Furthermore, the human coder may
be able to select an important text snippet, that is, a specific portion of the sen-
tence that more precisely expresses the event type or driver, and which is judged
sufficient to determine the classification of the sentence. This text snippet could
be a single word (such as ‘attack’) or a phrase (such as ‘killed in a drone strike’).
Again, in our evaluation of machine learning for sentence classification, we fo-
cus on recall and matching the classifications made by the human coder over
precision, as this avoids the assumption that the human made a deliberate de-
cision not to label a particular sentence in a particular manner. We note that if
a human coder did not filter out the false positives, these would be classified in
the next stage of the process which produces ontology labels for each sentence,
resulting in a higher number of incorrectly labelled sentences.

4.3 Ontology Classification

The classification of sentences can be made at either the sentence level or the
text snippet level. If a human in the process of filtering relevant sentences only
accepts or rejects the sentences and provides no more filtering then the system
can only operate at the sentence level. However, if a user is able to filter the
sentence to the relevant text snippet then our classifier should have a higher
recall as irrelevant tokens are manually filtered out.

Table 3. Sentence Classification - AfPak Dataset

Sentences Input Relevant Recall Fully Misclassified Sentences

Machine Joint Correct Labels Missed Labels Machine Joint Error Reduction

MNB 979 213 260 72.2% 100 27.8% 811 82.8% 45 21.1% 74.5%

MNB-UP 1,555 252 291 71.5% 116 28.5% 1,362 87.6% 59 23.4% 73.3%

SVM 328 156 210 78.1% 59 21.9% 196 59.8% 24 15.4% 74.2%

MNB-UP + SVM 1,555 252 323 79.4% 84 20.6% 1,342 86.3% 39 15.5% 82.0%

Table 4. Sentence Classification - ICG DRC Dataset (Mean 10-fold Cross Validation)

Sentences Input Relevant Recall Fully Misclassified Sentences

Machine Joint Correct Labels Missed Labels Machine Joint Error Reduction

MNB 237.8 124.8 87.8 54.0% 74.6 46.0% 159.9 67.2% 46.9 37.6% 44.0%

MNB-UP 343.3 155.0 109.1 56.0% 85.8 44.0% 244.4 71.2% 56.1 36.2% 49.2%

SVM 191.6 98.4 71.0 53.9% 60.8 46.1% 129.4 67.5% 36.2 36.8% 45.5%

To evaluate sentence classification, we construct models based on the two
MNB approaches and the SVM approach. We then input into each model its
corresponding true positive classifications from the previous stage of the process,
assuming false positives are removed by a human coder. As each sentence may
have multiple labels, our ontology classifiers are configured to produce the 3 most
relevant classification labels, and use a modified definition of recall more suited
to the multi-label setting. For each model, we define tc to be the number of
correct labels within these top 3 labels and fc to be the number of correct labels
that were not predicted by the model to be within the top 3 labels, summing over
all sentences. We define the relevant recall of a model as the overall proportion
of the correct labels that are found by the model:

relevant recall =
tc

tc + fc

Let fs be the number of sentences for which the model produces no correct labels
within the top 3. We define the full sentence misclassification rate as:

full sentence misclassification rate =
fs

|Sentences Input|

The aim is high relevant recall and low full sentence misclassification rate.

Sentence Classification Table 3 shows the results of this evaluation applied
to the AfPak dataset in classifying the relevant sentences into our enhanced
CAMEO ontology. These results show that the MNB-UP model produces the
highest raw number of correct label classifications, although it has the lowest
relevant recall. This first result is due to the model having the largest number
of true positive relevant sentences supplied to it from the previous stage and
the latter result suggests that the MNB-UP classifier is not as good in this
second stage. In contrast, the SVM model has the highest relevant recall and
the lowest number of full sentence misclassifications. Using this result we form

Table 5. Text Snippet Classification - AfPak Dataset

Sentences Input Relevant Recall Fully Misclassified Sentences

Joint Correct Labels Gain Missed Labels Joint

MNB 213 279 77.5% 5.3% 81 22.5% 54 25.4%

MNB-UP 252 333 81.8% 10.3% 74 18.2% 60 23.8%

SVM 156 214 79.5% 1.4% 55 20.4% 39 25.0%

Table 6. Text Snippet Classification - ICG DRC Dataset (Mean 10-fold Cross Valida-
tion)

Sentences Input Relevant Recall Fully Misclassified Sentences

Joint Correct Labels Gain Missed Labels Joint

MNB 124.8 90.8 57.2% 3.2% 68 42.8% 44.2 34.5%

MNB-UP 155.0 114.5 58.7% 2.7% 80.4 41.3% 49.4 31.8%

SVM 98.4 74.5 56.5% 2.6% 57.3 43.5% 31.4 31.9%

the hypothesis that the MNB-UP classifier is the best at identifying possible
relevant sentences in the first stage of the process and the SVM classifier is the
best performer at classifying relevant sentences into the ontology (on the AfPak
dataset). To test this hypothesis we feed the MNB-UP’s true positive result from
the first stage into the SVM ontology classification model. This result is in the
last row of Table 3 and shows that this approach produces the highest raw and
relative number of correct labels. Importantly, we can see the effect of the human
coder in filtering out irrelevant sentences prior to machine learning, which for
MNB-UP + SVM gives an 82% reduction in full sentence misclassifications.

However, these results are not as pronounced on the ICG DRC dataset
(shown in Table 4). On this dataset the MNB-UP classifier is the best performer
in both stages of the classification process. Furthermore, the relevant recall rate
in this dataset is much lower than the AfPak dataset evaluation; there is also a
reduction in full sentence misclassifications, but it is not as large.

Text Snippet Classification Our final evaluation considered whether the rel-
evant recall rate would improve if a human annotator was able to extract only
the relevant text snippet for classification into the ontology. Table 5 shows this
evaluation on the AfPak dataset. This shows that for all models there is an
increase in the number of correct labels predicted, with the largest increase in
performance in the MNB-UP classifier, but at the expense of an increase in the
full misclassified sentences rate. This suggests that although the relevant recall
increases, the process by which the text snippet is selected can eliminate infor-
mation from other sentences which were previously classified correctly. A similar
but smaller increase in relevant recall is seen in the evaluation on the ICG DRC
dataset in Table 6. In this dataset the number of fully misclassified sentences
decreases across all models. We conclude that with text snippets, classification is
improved, but selecting only very specific words can result in a loss of contextual
information and increase the number of fully misclassified sentences.

5 Related Work

With respect to existing approaches for this type of application, the Social,
Political and Economic Event Database (SPEED) system [10] is the most sim-
ilar. In this system human coders are presented with input data (documents)
that has been automatically pre-processed and classified as relevant. It is then
claimed that humans “perform only the most difficult coding decisions”. The
SPEED system is developed with a Naive Bayes classifier trained initially on
33,000 training documents. Relevant documents are then passed through a NLP
pipeline which extracts people, locations and organisations. Human coders then
check all the machine outputs. One of the key arguments of Nardulli et al. [10]
for their approach is that menial work is handled by the machine and the cog-
nitively challenging tasks are handled by the human. In developing their Naive
Bayes model for selecting relevant documents their original document level true
positive rate was 33% and was improved to 87% after an additional 60,000
training documents were added to the model. In our datasets, which trained rel-
evant/irrelevant classification models at the sentence level we achieved a recall
of 71% for both datasets with a MNB variant trained on a much smaller dataset.
The finding that MNB is the best classifier for deciding relevance is consistent
with the resuits of Nardulli et al. [10].

6 Conclusion

We have demonstrated that standard machine learning techniques can be applied
to the problem extracting and classifying events and conflict drivers from news
and NGO reports. This approach differs from previous work on event extraction
in the social sciences that has focused on the use of rules for matching large
dictionaries of actors, locations and specific verb phrases.

Recognizing the importance of human input to the coding process, we pro-
posed a two-step “joint” process and showed experimentally that human input
is effective when used to: (i) filter out irrelevant sentences from amongst those
classified as relevant by an automated method, and (ii) select the correct clas-
sification(s) from a small number of suggestions given by a learning model. The
models were tested using event data focusing on violent events in Afghanistan,
and a dataset of conflict drivers in the Democratic Republic of the Congo.

Future work involves incorporating the process into a complete “pipeline” for
ingestion of news, social media feeds and NGO reports, and storing events and
drivers in a searchable database. Research will also address extracting the com-
ponents of events (actors, targets, etc.), and the use of stream mining methods
to extract information in real time, exploiting the temporal nature of the data.

Acknowledgements

This work was supported by Data to Decisions Cooperative Research Centre.
We are grateful to Josie Gardner for labelling the ICG DRC dataset, and to
Michael Burnside and Kaitlyn Hedditch for coding the AfPak event data.

References

1. Azar, E.E.: The Conflict and Peace Data Bank (COPDAB) Project. Journal of
Conflict Resolution 24, 143–152 (1980)

2. Bagozzi, B.E., Schrodt, P.A.: The Dimensionality of Political News Reports. Paper
presented at the Second Annual General Conference of the European Political
Science Association, Berlin (2012)

3. Bond, D., Bond, J., Oh, C., Jenkins, J.C., Taylor, C.L.: Integrated Data for Events
Analysis (IDEA): An Event Typology for Automated Events Data Development.
Journal of Peace Research 40, 733–745 (2003)

4. Bond, D., Jenkins, J.C., Taylor, C.L., Schock, K.: Mapping Mass Political Conflict
and Civil Society: Issues and Prospects for the Automated Development of Event
Data. Journal of Conflict Resolution 41, 553–579 (1997)

5. Gerner, D.J., Schrodt, P.A., Yilmaz, O., Abu-Jabr, R.: Conflict and Mediation
Event Observations (CAMEO): A New Event Data Framework for the Analysis
of Foreign Policy Interactions. Paper presented at the Annual Meetings of the
International Studies Association, New Orleans, LA (2002)

6. LaFree, G., Dugan, L.: Introducing the Global Terrorism Database. Terrorism and
Political Violence 19, 181–204 (2007)

7. Leetaru, K., Schrodt, P.A.: GDELT: Global Data on Events, Location, and Tone,
1979–2012. Paper presented at the Annual Meetings of the International Studies
Association, San Francisco, CA (2013)

8. McClelland, C.: World Event/Interaction Survey (WEIS) Project 1966-1978. Inter-
University Consortium for Political and Social Research (1978)

9. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cam-
bridge, MA (2012)

10. Nardulli, P.F., Althaus, S.L., Hayes, M.: A Progressive Supervised-learning Ap-
proach to Generating Rich Civil Strife Data. Sociological Methodology 45, 148–183
(2015)

11. Raleigh, C., Linke, A., Hegre, H., Karlsen, J.: Introducing ACLED: An Armed
Conflict Location and Event Dataset Special Data Feature. Journal of Peace Re-
search 47, 651–660 (2010)

12. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the Poor Assumptions
of Naive Bayes Text Classifiers. In: Proceedings of the Twentieth International
Conference on Machine Learning, pp. 616–623 (2003)

13. Schneider, K.-M.: Techniques for Improving the Performance of Naive Bayes for
Text Classification. In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent
Text Processing, pp. 682–693. Springer-Verlag, Berlin (2005)

14. Schrodt, P.A., Davis, S.G., Weddle, J.L.: Political Science: KEDS—A Program for
the Machine Coding of Event Data. Social Science Computer Review 12, 561–587
(1994)

15. Schrodt, P.A., Yonamine, J.E.: A Guide to Event Data: Past, Present, and Future.
All Azimuth 2(2), 5–22 (2013)

16. Wang, S., Manning, C.D.: Baselines and Bigrams: Simple, Good Sentiment and
Topic Classification. In: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers - Volume 2, pp. 90–94 (2012)

