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Abstract. Multi-robot task allocation research has focused on sequen-
tial single-item auctions and various extensions as quick methods for
allocating tasks to robots with small overall team costs. In this paper we
outline the benefits of grouping tasks with positive synergies together
and auctioning clusters of tasks rather than individual tasks. We show
that with task-clustering the winner determination costs remain the same
as sequential single-item auctions and that auctioning task-clusters can
result in overall smaller team costs.

1 Introduction

Consider a team of autonomous mobile robots operating in an office-like environ-
ment. These robots may be required to deliver documents between departments,
clean up spillages, or act as tour guides to visitors. In many situations there will
be a set of tasks to be completed and we wish for the robots to distribute these
tasks amongst themselves in a manner that satisfies a global team objective.
Recently, multi-robot cooperative auctions have become a popular approach for
solving task-allocation problems [3].

We can achieve an optimal allocation of a set of tasks to robots using a single-
round combinatorial auction. However, in most situations where there are many
tasks, combinatorial auctions fail to perform efficiently due to high communica-
tion and winner determination costs [1]. As an alternative, much of the research
focus has been on the use of sequential single-item auctions (SSI auctions) for
task allocation over multi-round auctions [6]. Although SSI auctions produce a
team cost that is at least as large as combinatorial auctions, they have much
lower communication and winner determination costs which results in a much
quicker allocation of tasks. To lower the team cost in SSI auctions researchers
have looked at improvements and extensions to the bidding phases of SSI auc-
tions through the use of techniques like rollouts, regret clearing and bundle-bids
(the interested reader is referred to [5,7]).

SSI auctions with bundles are an interesting hybrid of standard SSI auctions
and combinatorial auctions in which each robot can bid on dynamic combina-
tions of up to k tasks and, during the winner determination phase, a robot can



be allocated between 0 — k tasks. In general, this approach results in lower team
costs as each bundle bid takes into account more synergies between tasks, how-
ever, because of the additional calculations involved in the bidding and winner
determination phases it performs a lot slower than standard SSI auctions.

In this paper we extend the idea of bidding on a collection of tasks and allow
robots to bid on fixed clusters of tasks where a robot will either win all items in
the cluster or none. We show empirically that this method results in lower team
costs than standard SSI auctions and performs much faster than SSI auctions
with bundle bids. More specifically, we demonstrate that SSC auctions result in
lower MiniMax distances than SSI auctions when the number of robots is greater
than 2. Moreover, for the MiniSum team objective, SSC auctions perform well
when the capacity constraint is small.

2 Multi-Robot Task-Allocation

We formalise the definition of the task-allocation problem in the same manner
as Koenig et al. [7]. Given a set of robots R = {r1,...,rn} and a set of tasks
T ={t1,...,tn}, any tuple (T}.,,..., T, ) of pairwise disjoint bundles T,., C T
and T;, # T, fori # j, for all i = 1,...,m, is a partial solution of the task-
allocation problem. This means that robot r; performs the tasks 7., and no
task is assigned to more than one robot. To determine a complete solution to
the task-allocation problem we need to find a partial solution (T}, ... T, ) with
Ur,erTy, =T, that is, where every task is assigned to exactly one robot.

The standard testbed of the task-allocation problem is multi-robot routing.
The tasks represent locations to visit. Robots know their locations and can
calculate the costs between locations. We assume costs are symmetric, A(4, j) =
A(j, i) and are the same for all robots. The robot cost A, (T.,) is the minimum
cost for an individual robot r; to visit all locations T, assigned to it. There
can be synergies between tasks, such that, A. (T,/) + A, () may not equal
Ar, (T UTyr). A positive synergy is when A, (T U T ) < Ny, (Trr) + Ay (Toorr).
Robots can also have capacity constraints where they can have at most a fixed
number of tasks. We wish to find a solution to the task-allocation problem that
achieves a team objective. In this paper we study two common team objectives:

MiniMax max,,erAr, (T7,), that is to minimise the maximum distance each
individual robot travels.

MiniSum . A, (7},), that is to minimise the sum of the paths of all robots
in visiting all their assigned locations.

These two team objective result in different allocations of tasks due to how each
robot calculates their bids incorporating synergies between tasks. Lagoudakis et
al. [8] explores these differences in more detail.

3 Sequential Auctions with Clusters

Auction-based methods for task allocation have become increasingly popular
in the recent literature. An auction is composed of three separate phases: the



initial phase in which an auctioneer sends a request to all robots indicating the
tasks up for auction; a bidding phase in which each robot evaluates the tasks
up for auction and responds with a bid for those in which it is interested; and,
a winner determination phase in which the auctioneer determines the winner
for each task. Common auction types include combinatorial auctions, parallel
auctions and sequential auctions. In combinatorial auctions each robot bids on
all subsets of the tasks on offer. This yields optimal results but the computation
tends to be intractable and is certainly not feasible for any but the smallest
scenarios. In parallel auctions the robots develop a bid for each task and the
auctioneer then allocates the tasks all at once. The computational complexity is
minimal but solutions are likely to be sub-optimal. Sequential auctions represent
a compromise between these two extremes. They progress over several rounds in
which a subset of tasks is auctioned in each round. In the case of SSI auctions,
one item (i.e., task) is auctioned in each round.

We now develop an extension to SSI auctions in which individual tasks are
organised into clusters taking into account positive synergies between tasks.
Robots bid on these clusters to solve the task-allocation problem. We call this
sequential single-cluster auctions (SSC auctions). An SSC auction consists of
three phases: clustering phase, bidding phase, and winner determination phase.
Initially, all tasks are unassigned. Before the auction, a clustering algorithm is
used to allocate all individual tasks into a cluster with the goal of maximising
the positive synergy between tasks in each cluster (clustering phase). Each task
can be assigned to one, and only one cluster. Clusters can be of varying sizes.
During each round, all robots bid on all unassigned task clusters (bidding phase),
the auctioneer then determines the winner and assigns the winning cluster to
the winning robot (winner determination phase). The winning robot must then
complete all tasks in that cluster.

Clustering Phase: Expanding upon our definition of the task-allocation
problem given in Section 2 we introduce the set of clusters C' = {cy,...,¢,}. We
now need to allocate all tasks to one and only one cluster. This is achieved by
taking any tuple (T,,...,Tc,) of pairwise disjoint bundles T,,; C T for all j =
1,...,0that satisfies Uc,ecT; = T'. For multi-robot routing the synergy between
tasks is represented by the distance between them. Tasks with a large distance
separating them have a low synergy, whereas, tasks with a small distance have a
high positive synergy. In this paper, we use the standard k-means algorithm [4]
for clustering tasks during the empirical experimentation. However, our proposal
does not depend upon k-means and other clustering methods that satisfy these
properties may produce better results.

Once we have organised all tasks into clusters we must ensure that all clus-
ters are allocated to one and only one robot. We do this by taking any tuple
(Cryy...,Cy, ) of pairwise disjoint bundles C,, C C for all ¢« = 1,...,m that
satisfy U,,erCr, = C. As a result of this we have now allocated all tasks into
clusters, and assigned all clusters to robots and therefore it holds that we still
have a valid solution to the task-allocation problem of all tasks being allocated
such that each task is allocated to one and only one robot.



Now we consider a single round of a SSC auction. We assume that robot
r; € R has already been assigned the set of task clusters C,, C C in previous
rounds for all r; € R. Therefore U = C\ U,,cgr Cy, is the set of unassigned task
clusters. Let a bid b be a triple of a robot b,., a task cluster b, and a bid cost by,
such that, b = (b, b, by).

Bidding Phase: The set of submitted bids B = {b1,...,b,,} satisfies: 1)
for all b € B, it holds that b. € R and b. € U; and 2) for all r; € R and
¢’ € U there exists exactly one bid b € B with b, = r; and b, = ¢/. That is each
robot submits one bid on each task cluster. For the MiniMax team objective,
by = M, (Cp, U{b.}). That is the robot bids the costs to do all tasks assigned to
it plus the tasks in the cluster it is bidding on. For the MiniSum team objective,
by = b, (Cp, U{bc}) — Mp,.(Ch,.). That is the robot bids the increase in its costs
for doing all of its currently allocated tasks plus the tasks in the cluster it is
bidding on.

Winner Determination Phase: Once all bids have been received, the
auctioneer evaluates a potentially winning bid ¥’ € B according to the value b).
The winning bid for both the MiniMax and MiniSum team objective is the bid
b with the smallest b,. The auctioneer then assigns all tasks in the cluster b/, to
the robot b/.

4 Properties

We now describe the unique behavioural properties of SSC auctions. These prop-
erties allow SSC auctions to operate in an efficent manner and generally result
in a small team cost.

1. The number of rounds in a SSC auction is no more than the number of
rounds in a SSI auction.
Proof: We define an SSI auction as the tuple Ags; = (R, T) where R repre-
sents the set of available robots and T the set of tasks. The number of rounds
in Agg; is equal to the number of tasks, Ngs; = |T|, as only one task is al-
located per round. We define an SSC auction is the tuple Az, = (R, T, C).
The number of rounds in A, is equal to the number of clusters, Ngs. = |C],
as one cluster is allocated per round. Each cluster can have one or more
tasks, therefore, |C| < |T'|, and as a result of this Nz, < Ngg;.

2. Winner determination time in a SSC auction is equal to winner determina-
tion time in a SSI auction.
Proof: In an SSI auction each bid b, consists of a robot b,, a task b;, and
a cost by. In an SSC auction the structure of a bid remains the same, with
the exception that b; is replaced by b. (as defined in Section 3). For winner
determination, we have a set of bids B and the value of each b is compared
in the same manner in both auction frameworks and |B| does not change.
Therefore the winner determination time does not change.
N.B. SSC winner determination time is much faster than SSI with bundles.
This is because in SSI with bundles each bid must include b, for each com-
bination of the k tasks that is being bid on. To determine the winner in SSI



with bundles each by for each combination needs to be compared to all other
bids and combinations to determine the winner.

3. When clusters employ positive synergies between tasks the resultant team
cost in a SSC auction is less than in a SSI auction.
Take for example, the same task-allocation problem as FExploration Task
4 in Koenig et al. [6] (Figure 1). In this problem an SSI auction fails to
consider enough synergies between tasks and results in a less than optimal
solution. For the MiniSum team objective the overall distance sum is 20
and the resultant paths for each robot to traverse are ry — to — t; and
r9 — t4 — t3. For an SSC auction we define our clusters ¢; = {t1,t3} and
¢y = {ta,ts}. Auctioning with the MiniSum team objective results in an
allocation of ¢; to 7o and ¢y to r1 with the resultant paths r; — to — t4 and
ro — t3 — t1. The overall distance sum is 15. However, it should be noted
that if a cluster fails to employ synergies correctly SSC auctions may result
in team costs that are worse than SSI auctions.

Fig. 1: Exploration Task 4 (Koenig et al.
[6])

Fig.2: Simulation of an office-like envi-
ronment (cf. Koenig et al. [6])

5 Experiment Setup

To test SSC auctions we simulate an office-like environment (Figure 2) as in
Koenig et al. [6]. For each experiment, doors between different rooms and the
hallway are either opened or closed. We tested on 25 different randomly gener-
ated configurations of opened and closed doors with each robot in each configu-
ration starting in a different random location which is standard in the literature
and therefore provides a common setting for comparison. Robots can only travel
between rooms through open doors and cannot open or close doors. In each
experiment robots are set a fixed task-capacity constraint of the ratio of the



number of tasks to the number of robots. Robots stop being allocated addi-
tional tasks once these capacities are met. For each configuration we test with
|R| € {2,4,6,8,10} and |T| € {6,7,...,60}.

We use standard k-means clustering to quickly create clusters of geographi-
cally close tasks to be auctioned. It is important to note that k-means clustering
does not take into account walls and closed doors. This means that it is possible
for tasks to be clustered together that may have a large navigational distance be-
tween them (low synergy). However, this approach best represents a real world
situation where it would be extremely complex to always create an optimal
grouping of tasks. For our experiments we test two different total numbers of
task-clusters. Our first experiment uses a cluster count of half the number of
tasks, and the second uses a cluster count of two-thirds the number of tasks.

For each auction round robots bid on the cluster that will result in the lowest
increase to the team objective. To determine their bid cost each robot needs to
solve a version of the travelling salesperson problem (TSP) where it needs to
travel to all tasks allocated to it but does not return to its initial location.
Solving the TSP is an NP-Hard problem so we need to approximate the true
cost. We do this by using the cheapest-insertion heuristic to add new tasks into
our path and then use the two-opt heuristic [2] to improve our solution.

To compare the effectiveness of SSC auctions we also run parallel, SSI, and
SSI with bundles auctions on the same 25 configurations. For SSI with bundles
we test k = 2 and k = 3 with a non-cautious auctioneer, that is, all k tasks are
allocated in each round. Furthermore, we test hard and soft capacity constraints
for SSI with bundles. Hard capacity constraints ensure that all robots are al-
located exactly their capacity of tasks. Soft capacity constraints allow robots
to go slightly over their capacity, provided they are under their capacity before
the round winner determination and allocation. This comparison of capacity
constraints is necessary because SSC auctions may result in allocations where
robots are slightly over their capacities because of the requirement that all tasks
in a cluster are allocated to the same robot.

6 Results

We begin our analysis with the MiniMax Team Objective with the mean experi-
mental results shown in Table 1. We observe that in all Robot/Task combinations
tested that SSC auctions result in a lower mean MiniMax result than SSI auc-
tions. Overall there is an average MiniMax distance reduction of 20% where the
number of clusters |C| = |7 and a reduction of 25% where the number of clus-
ters |C| = 2|T|. However, |C| = 2|T| does not result in lower mean MiniMax
distances than |C| = 1|T'| in all Robot/Task combinations. We also note that
SSI auctions with bundles also result in lower mean MiniMax distances than
both standard SSI auctions and SSC auctions. Interestingly SSI auctions with
bundles where k£ = 3 do not always result in lower results than SSI auctions with
bundles where k = 2 for all Robot/Task combinations. This result, however,



[ Standard ] SSC [[ SSI bundles k = 2 [ SST bundles k = 3 |
|Capacity[Robots[Tasks[[Parallel[ SSI|[[C] = Z|T|[|C] = Z|T|[[Hard-Cap[Soft-Cap|Hard-Cap[Soft-Cap)|

3 2[ 6] 10391130 1085 944 823 811 607 613
3 4] 12| 1094|1138 880 946 828 808 762 755
3 6| 18| 1060|1156 899 833 743 704 730 675
3 8| 24| 1199[1112 853 760 668 680 763 706
3 10 30| 1092|1159 802 733 656 651 670 636
1 2| 8| 1318|1284 1242 1108 965 950 1060| 1194
4 4| 16|| 1430[1239 1034 1042 880 851 1038 969
4 6| 24| 1301|1352 1030 868 779 781 762 679
4 8| 32| 1310|1299 857 856 747 767 789 999
4 10| 40| 1438[1249 889 758 704 687 821 855
5 2| 10| 14641364 1260 1257 1132|1101 1326] 1248
5 4| 20| 1545|1207 1138 1142 928 905 1001| 1119
5 6| 30| 1485|1289 1087 1003 850 835 915 853
5 8| 40| 1506[1341 989 952 819 797 974 891
5 10| 50|  1574[1347 933 872 773 732 850 1051
6 2| 12| 1699/1690 1421 1459 1231 1197 1092|1117
6 4| 24| 1711|1457 1274 1142 1039| 1010 972 923
6 6| 36| 1782|1409 1129 1051 840 884 1076| 1061
6 8| 48| 1713|1463 1132 1012 907 812 894 964
6 10| 60| 1736]1492 957 909 836 813 928 856

Overall Mean:||_1425[1313]] 1045] 983]] 857 839] 901] 908]

Table 1: Mean MiniMax Experimental Results

is consistent with Koenig’s prior results for SSI auctions with bundles where a
non-cautious auctioneer has been used [7]. Despite, SSI with bundles producing
lower results than SSC the computational overhead is significantly higher and
the consequences of this are discussed further below.

To confirm the validity of our results we perform two-sample independent one-
tailed t tests comparing the SSC auction results to the SST auction results for each
Robot/Task combination. We define our null hypothesis as Hy : pAsse > ppAssi
and our alternative hypothesis as H, : pAgssc < pAssi, that is, we wish to prove
that the mean result for SSC auctions are lower than SSI auctions. We declare
any result a significant difference if the result of the ¢ test P is less than 0.05,
that is, the probability of the decrease between the mean results of SSC auctions
compared to SSI auctions being a result of random variation is less than 5%.

The significance tests show that in all but three Robot/Task combinations
we have a statistically significant reduction in the MiniMax distance, that is,
we accept the alternative hypothesis. The non-significant results occur, in both
|C| sizes, when there are only 2 robots with total tasks {6, 8,10}. However, in
these scenarios we can expect that clustering will not perform well due to the
low numbers of robots and tasks.

Finally we perform two-sample independent two-tailed t tests for the differ-
ence between the cluster sizes for all Robots/Tasks combinations (Ho : ppA|c|= 1|

= pAici=2\7s Ha : BAc=17) # BAjci=2/7))- Only two combinations, (|R|
6,|T| = 24) and (|R| = 10,|T| = 40), result in a significant difference between
the two cluster sizes, in which |C| = 2|T| produces the smallest distances. Over-
all we can conclude that SSC auctions result in lower MiniMax distances than
SSI auctions when the number of robots is greater than 2.



[ Standard ] SSC [[ SSI bundles k = 2 [ SST bundles k = 3 |
|Capacity[Robots[Tasks[[Parallel[ SSI|[[C] = Z|T|[|C] = Z|T|[[Hard-Cap[Soft-Cap|Hard-Cap[Soft-Cap)|

3 2[ 6] 1653|1819 1589 1615 1661] 1617 1398] 1398
3 4| 12| 2757|2867 2331 2411 2243| 2378 1997| 1984
3 6| 18| 3580|3542 2864 2982 2643 2628 2284| 2285
3 8| 24| 4723|4395 3366 3596 3191| 3281 2489| 2462
3 10| 30| 5057|4928 3764 3869 3394| 3408 2751|2663
1 2| 8| 2085[1941 1889 1971 1857|1796 1850| 1844
4 4| 16| 3564[3180 2783 2892 2641 2637 2514 2497
4 6| 24| 4417|4033 3448 3718 3268| 3301 2612 2652
4 8| 32| 54284780 3749 4144 3607| 3703 3125 3391
4 10| 40|| 6370|5391 4371 4605 3998| 4181 3183|3442
5 2| 10| 23782149 2202 2198 2154 2127 2444 2145
5 4| 20| 4026(3029 3170 3372 2981| 3038 3019 2933
5 6| 30| 5129/4086 4044 4078 3677 3825 3025 2842
5 8| 40| 6334[4741 4549 4637 4221| 4320 3529| 3403
5 10| 50| 7087|5353 4745 5078 4526 4848 3850 3947
6 2| 12|| 28342628 2397 2417 2482( 2464 2402( 2478
6 4| 24| 4435|3537 3512 3498 3360 3407 3014| 2859
6 6| 36| 5941|4475 4302 4139 4207| 4081 3377|3593
6 8| 48| 7234|5268 5028 5022 4753| 4961 3791 3824
6 10| 60|| 8059(5805 5523 5731 5289] 5093 4007| 4170

Overall Mean:||_4654]3897]] 3481] 3599]] 3308] 3355 2833 2841]

Table 2: Mean MiniSum Experimental Results

The mean results of the MiniSum Team Objective is shown in Table 2. Overall
there is a mean MiniSum distance reduction of 12% where the number of clusters
|C| = |T| and a reduction of 8% where the number of clusters |C| = 2|T'| when
compared to SSI auctions. However, in contrast to the MiniMax results, there is
not a mean distance reduction in every Robot/Task combination. In particular,
the combination (|R| = 4,|T| = 20) shows a substantial increase in the MiniSum
distances in both cluster sizes. The results for our experiments using SSI with
bundles show that they result in lower distances than SSI and SSC auctions.
We observe that in experiments with bundle size k¥ = 3 the mean distance is
consistently lower than experiments with bundle size £ = 2. This is in line with,
and validates, Koenig’s previous work on SSI with bundles.

We perform two-sample independent one-tailed t tests comparing the SSC
auction results to the SSI auction results for those Robot/Task combinations
where the SSC result is less than the SSI result (Hp : pdlsse > pAssi, Ha
pAsse < pAssi), that is, we test for a statistically significant decrease in the
mean results of SSC compared to SSI. When the SSC result is greater than the
SSI result we perform two-tailed t tests for a difference between the two samples
(Ho : pAsse # 1Assi, Hy  nAgse = pAssi), that is, we test for no statistically
significant difference between the mean results.

The results of these tests give an interesting partition of the data. In ex-
periments where the robot capacity is 3 or 4 we confirm a significant result in
the reduction of the mean MiniSum distances for all combinations except those
where |R| = 2. However, in all cases where the robot capacity is 5 or 6 we get
no significant difference between the SSI and SSC auctions, except, in the previ-
ously mentioned combination (|R| = 4,|T| = 20) with |C| = 2|T'| which, in the
two-tailed ¢ tests, confirmed a significant increase in distance.



The MiniSum results are not in line with our predictions. The raw data ap-
pears to show SSC auctions mostly performing better than SSI auctions. How-
ever, our statistical testing does not confirm this. We can conclude that when
the capacity constraint is small SSC auctions perform well. However, more ex-
periments are needed to examine situations where robots are allocated many
tasks. For instance using a different clustering algorithm, such as potential fields
or graph partitioning, may produce a significant reduction in the distance.

Standard ] SSC [[ SSI bundles k = 2 [ SSI bundles k = 3|
‘Capacity‘Robots‘Tasks Pa.rallel‘ SSIH\C| = %|T|HC\ = %\T\"Hard-Cap‘Soft—Cap‘Hard—Cap‘Soft—Cap‘
3 2 6 1.9 2.4 2.6 2.5 3.3 2.4 2.9 2.9
3 4 12 4.0 7.8 8.2 8.1 14.4 14.9 14.9 15.2
3 6 18 7.3| 16.3 16.4 16.1 46.9 47.2 47.4 47.5
3 8 24 12.7| 29.6 32.1 29.5 117.8 119.0 121.3 120.8
3 10 30 20.0| 47.2 49.3 46.4 245.3 244.8 244.9 242.3
4 2 8 2.3 3.4 3.5 3.4 4.1 4.0 4.4 4.4
4 4 16 5.1| 11.7 11.7 11.5 23.4 23.9 24.9 24.9
4 6 24 9.4| 25.4 26.2 24.8 80.2 80.3 82.9 81.0
4 8 32 16.1| 45.2 46.8 45.8 201.0 200.4 207.5 207.7
4 10 40 29.8| 72.9 73.4 72.5 415.0 422.8 419.9 431.4
5 2 10 2.7 4.4 4.6 4.6 5.5 5.5 5.5 5.4
5 4 20 6.1 16.1 16.2 16.3 34.2 34.2 35.3 35.6
5 6 30 11.4| 35.9 36.5 35.6 120.8 123.1 124.7 125.4
5 8 40 19.9| 65.3 66.1 65.5 312.5 326.3 320.5 315.2
5 10 50 31.4|104.3 105.0 102.4 649.5 649.4 659.9 661.9
6 2 12 3.2 5.7 6.9 5.7 7.1 7.1 7.2 8.1
6 4 24 7.2| 214 22.1 25.5 48.3 48.4 50.5 50.6
6 6 36 14.1] 47.1 50.5 49.0 171.7 170.5 180.4 178.7
6 8 48 24.3| 87.1 87.8 87.0 445.7 432.6 445.4 458.4
6 10 60 37.9|138.4 146.4 140.0 908.4 890.0 929.5 1082.3
\ Overall Mean:]] __ 8.9] 26.3]] 27.1] 26.4]] _ 128.5] 128.2]  13L0] 136.7)

Table 3: Mean Total Task-Allocation Determination Time (seconds)

Table 3 shows the mean time to run auctions and allocate all tasks for each
Robot/Task combination. For all auctions except SSC we begin timing when
the robots are informed of the tasks to bid on and stop timing when all tasks
have been allocated. For the SSC auctions we begin timing when the clustering
algorithm begins and stop when all tasks have been allocated.

Parallel auctions are always the quickest auction to finish, however, they pro-
duce the most sub-optimal distance results. Standard SSI are on average around
three times slower than Parallel auctions. SSC auctions run in a comparable
time to SSI auctions. This is an important point because SSC auctions need
to generate the task clusters before auctions can begin which can take consid-
erable time. However, once the auctioning phases begin they are quicker than
SSI auctions because they have fewer auction rounds. This result validates our
properties from Section 4 and analysing both the mean distance results and the
timing results empirically demonstrates that SSC auctions can result in a lower
team objective distance in a similar time to SSI auctions.

Finally, SST auctions with bundles perform around five times slower than SSI



and SSC auctions and 13 times slower than Parallel auctions. Although SSI auc-
tions with bundles produce the lowest team objective distances the performance
trade-off cost is very high.

7 Conclusions and Further Work

In this paper we have shown the benefits of SSC auctions as an alternative to
SSI auctions for the allocation of tasks to robots. We developed the theoretical
foundations of SSC auctions and outlined their unique behavioural properties.
Using the standard multi-robot routing test-bed we demonstrated empirically
that SSC auctions can produce smaller team objective results than SSI auctions.
We also compared these results to another extension of SSI auctions which in-
volves grouping tasks, SSI auctions with bundles, and showed that SSC auctions
perform much quicker.

This paper provides scope for further investigation of SSC auctions. For in-
stance, a comparison of the effectiveness of different clustering algorithms could
provide an insight into the trade-off between run-time speed and the optimality
of the final allocation. Applying SSC auctions to dynamic task allocation and
reallocation in a manner similar to [9] can also be considered. Finally, clustering
non-homogeneous tasks could be advantageous in the quick allocation of complex
task sets.
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