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Abstract. Recent research has shown the benefits of using K-means
clustering in task allocation to robots. However, there is little evalua-
tion of other clustering techniques. In this paper we compare K-means
clustering to single-linkage clustering and consider the effects of straight
line and true path distance metrics in cluster formation. Our empirical
results show single-linkage clustering with a true path distance metric
provides the best solutions to the multi-robot task allocation problem
when used in sequential single-cluster auctions.

1 Introduction

We consider a team of autonomous mobile service robots operating in an office-
like environment. These robots may be required to deliver mail between rooms,
provide an escort to visitors, or complete cleaning tasks. In all of these situations
a set of tasks is to be completed and it is our desire that the tasks are distributed
amongst all available robots in a manner that seeks to optimise a global team
objective.

Recent research has shown market-based sequential auctions can quickly gen-
erate good solutions to this class of problem. In particular, Sequential single-item
auctions (SSI auctions) which allocate tasks to robots one task per auction round
at a time provide solutions within guaranteed bounds [11, 8]. Further refinements
of this approach have considered various components such as considering com-
plete task allocations with rollouts [20], changing the winner determination rules
[10], and exchanging tasks post-initial allocation [19, 14].

However, a drawback of allocating tasks one at a time in a market-based
environment is that robots are generally greedy in their bidding strategies and
will often only consider tasks that seek to minimise their overall cost, rather than
the global team cost. For instance, it is common for two robots to be allocated
one task each when the overall team cost would be lower if one robot completed
these two tasks and the other robot was allocated and completed other tasks.
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To overcome this problem, Koenig et al. [9] consider an extension of SSI auc-
tions where robots form and bid for combinations of multiple tasks during each
auction round. However, despite this approach improving the final task alloca-
tion, the calculations required to form the task bundles are very computationally
expensive. Heap and Pagnucco considered the merits of this approach in their
work on Sequential single-cluster auctions (SSC auctions) [5,6] which uses K-
means clustering to form clusters of tasks that are allocated to robots as fixed
bundles.

Furthermore, K-means clustering has also been used in a variety of other
multi-robot task allocation problems. These include evenly balancing task allo-
cation between robots [4], ensuring robots are spread out in the exploration of
unknown space [17,15], and for map segmentation in RoboCup Rescue Agent
Simulation [13]. However, few papers have considered alternative algorithms for
the formation of task clusters. In this paper we use SSC auctions to compare
K-means clustering to single-linkage clustering and consider both straight line
distance and true path distance (which takes into consideration obstacles be-
tween tasks) as metrics in cluster formation.

In the remainder of this paper we define the multi-robot task allocation prob-
lem in the domain of auction-like algorithms, we define SSC auctions, outline
each clustering technique, consider the time required for each clustering algo-
rithm to complete, and report our empirical experimental results for each clus-
tering techinque when used in SSC auctions for task allocation. Our key results
show single-linkage clustering with a true path distance metric is the best per-
forming clustering technique when used in SSC auctions to solve the multi-robot
task allocation problem. However, we also show that the time required to form
clusters using a true path distance metric is around 100 times slower than using
straight line distances.

2 Multi-Robot Routing

Multi-robot routing (Fig. 1) is considered the standard testbed for the multi-
robot task allocation problem in which each task is represented as a location to
visit [3]. We follow Koenig et al. [9] in their formalisation of the problem. Given
a set of robots R = {ry,...,rm,} and a set of tasks T = {t1,...,t,}, any tuple
(T, ..., T,) of pairwise disjoint bundles T},, C T'and T;,, NT,., = () for i # j, for
all i =1,...,m, is a partial solution of the multi-robot task allocation problem.
This means that robot r; performs the tasks T},, and no task is assigned to
more than one robot. To determine a complete solution we need to find a partial
solution (T, ... Ty, ) with U, erT,, = T, that is, where every task is assigned
to exactly one robot.

Robots have perfect localisation and can calculate the costs to travel between
locations. We assume costs are symmetric, A(%,j) = A(j,4) and are equal across
all robots. The robot cost A,.(7}) is the minimum cost for an individual robot r
to visit all locations T, assigned to it. There can be positive synergies between
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Fig. 1: Multi-Robot Routing

tasks where A, (T}, UT,,) < A, (T3,) + A, (T},). Furthermore, we desire to find

a complete solution that seeks to minimise a global team objective. In this paper
we test with two common team objectives first introduced in [18]:

MiniMax max,ecgA-(T,), that is to minimise the maximum distance each in-
dividual robot travels.

MiniSum ) _, A-(7}), that is to minimise the sum of the paths of all robots
in visiting all their assigned locations.

3 Sequential Single-Cluster (SSC) Auctions

SSC auctions [5] are an extension of SSI auctions and assign fixed clusters of
tasks to robots over multiple bidding rounds. At the conclusion of each bidding
round one previously unassigned task cluster ¢ = {t1,...,t,} is assigned to the
robot that bids the least for it so that the overall team cost increases the least.
After all task clusters are allocated, each robot seeks to complete all its allocated
tasks in as short a distance possible. Robots do not have to do all tasks in a
cluster sequentially. When a robot is awarded a new cluster, the robot adds the
tasks in this new cluster to its existing task assignment and replans its path to
travel.

We formulate the algorithm for SSC auctions in Fig. 2. Each robot runs the
algorithm independently of other robots and, with the exception of supplying
the initial list of tasks and clusters to each robot, there is no centralised con-
troller. Before the SSC auction algorithm begins, a clustering algorithm is used
to allocate all tasks into task clusters and C = {ci,..., ¢} is the set of all clus-
ters. Each task is assigned to one, and only one cluster, and clusters can be of
varying sizes. All robots are informed of all tasks and all clusters.
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function SSC-Auction (C,C, r, R)
Input: C: the set of clusters to be assigned
C'-: the set of clusters presently assigned
r: the robot r
R: the set of robots R
Output: C;: the set of clusters assigned to the robot

while (C # 0)
/* Bidding Stage */
for each cluster ¢ € C
By, +CalcBid(Ch,c);
Send(B5, R) | B < | JReceive(By,, R);

1:
2
3
4
5
6: /* Winner-Determination Stage */
7 (r', c) « arg ming e ccey B;
8 if r=1' then
9 Cr + CrU{c};
0 C + C\{c};

Fig. 2: Sequential Single-Cluster Auctions

The SSC auction begins and continues while there are unassigned task clus-
ters (Line 1). During the bidding stage (Lines 2-5) the robot calculates bids
for every unassigned task cluster and submits its lowest bid to all other robots.
Each bid calculation requires robots to provide a solution to the travelling re-
pairman problem [1]. Because this problem is NP-hard, robots often use the
cheapest-insertion and two-opt heuristics [2] to provide a close approximation
to the optimal solution. Each bid is a triple 8 = (b, b., by) of a robot b, a task
cluster b, and a bid cost by. The function CalcBid takes the set of previously
assigned clusters C). to robot r and the cluster ¢ being bid on and uses a bid-
ding rule to calculate a bid cost (Line 4). The robots send their bids and receive
all bids from other robots in parallel (Line 5). The winner-determination stage
(Lines 6-10) consists of each robot choosing the task cluster with the lowest
bid from the set of submitted bids. Ties are broken in an arbitrary manner. The
robot with the winning bid has the winning task cluster assigned to it. All robots
then remove the winning task cluster from the set of unassigned clusters and the
next bidding round begins.

4 Clustering Techniques

We now consider two different models of cluster formation. K-means clustering
is a form of centroid based clustering where each object is assigned to a single
cluster based on the object’s proximity to the centre of the cluster. Single-linkage
clustering is a form of connectivity based clustering which recursively merges
clusters by the minimum distance between two objects in each cluster. In this
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function K-means (7,k) o
Input: T': the set of tasks to be clustered N
k: the number of clusters to form
Output: C: the set of clusters

N

1: M+ InitialiseClusterCentres(T,k); a: Initial Cluster Centres
2: while cluster centres have changed
/* Task Cluster Assignment Stage */ [~
for each task t € T o
for each cluster centre m; € M N F
)\ini <+ CalcDistance(t,m;); N
C”””(Af,,
/* Update Cluster Centres Stage */

for each cluster c € C
M. +CalcCentre(c); b: Stable Cluster Centres

y < &

—

Fig.3: K-means Clustering Fig.4: Formation of three clusters of
four objects using K-means clustering
with a straight line distance metric.

section we also compare the effects of using straight line distance and true path
distance as metrics for both clustering models.

The standard K-means clustering algorithm [12] is given in Fig. 3 and an
example cluster formation with a straight line distance metric is presented in
Fig. 4. Before the algorithm begins the initial centres of all clusters must be
selected (Line 1). A common approach for this is to randomly select k objects
from the set of data to be clustered and use each of these objects as an ini-
tial cluster centre (Fig. 4a). The algorithm then alternates between two stages
until the membership of all clusters is stable (Fig. 4b). During the task clus-
ter assignment stage (Lines 3 - 7) every task is considered independently. The
distance between the task and every cluster centre is calculated and the task is
reassigned from its current cluster to the cluster with the minimum distance to
itself. During the update cluster centres stage (Lines 8 - 10) the centre of each
cluster is recalculated to reflect the changes in the membership of each cluster.
The algorithm then repeats until no object moves between clusters.

We present an algorithm to perform single-linkage clustering [16] in Fig. 5
and give an example cluster formation with a true path distance metric in Fig.
6. The algorithm begins with each object being assigned to a cluster containing
only itself (Lines 1 - 2) (Fig. 6a). Clusters are then repeatedly merged until the
number of clusters is equal to k (Lines 3 - 10) (Fig. 6b). To merge clusters we
calculate the distance between every individual object in each cluster and every
object in every other cluster (Lines 4 - 6). The two clusters containing the two
objects with the minimum distance between them are then merged (Lines 7 -
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function Single-linkage (7',k) /01\ 02

Input: T': the set of tasks to be clustered N

k: the number of clusters to form
Output: C': the set of clusters

N

1: for each task t; € T a: Initial Clusters
2 Ci ti;

3: while |C| > k

4 for each cluster C D C;

5 for each cluster C\C; D C;
6: Agj +CalcDistance(C;,C;);
7

8

9

0

A

1

if min(Ag’;) then
Cmerged “— {Olyc]}7
C+Cu {C'rrze'r'ged};
C + C\{C;,C;}; b: Final Merged Clusters

10:

Fig. 5: Single-linkage Clustering Fig.6: Formation of three clusters of
four objects using single-linkage cluster-
ing with a true path distance metric.

10). The algorithm then repeats until there are k clusters.

In our experiments we expect that the differences in the design of these two
algorithms will cause vastly different task allocations to robots. Due to K-means
clustering focussing on 2-dimensional areas of tasks, we expect that each robot
will be generally constrained to completing tasks within an isolated area. In
comparison, task clusters formed using single-linkage clustering are more likely
to see robot paths crossing over each other as the task formation is focussed on
the 1-dimensional connection between any two tasks.

5 Cluster Formation Time Analysis

The length of time required to formulate clusters is crucial in finding a good
solution to the multi-robot task allocation problem. The time complexity for
K-means clustering is O(|T|%*11og |T|) (where d is the number of dimensions)
[7] and for single-linkage clustering is O(|T|?). Generally speaking single-linkage
clustering is much quicker than K-means clustering.

However, it is also important to take into account the time involved in the
calculation of the distance metric. When we consider the calculation of a straight
line Euclidean distance between objects the time required is minimal. Contrary
to this is the time required to calculate the true path distance between two
objects taking into account obstacles. Even in a two dimensional environment,
such as the map presented in Fig. 4 and Fig. 6, two geographically close objects
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Fig. 7: Cluster Formation Time using a Straight Line Distance Metric
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Fig. 8: Cluster Formation Times using a True Path Distance Metric

02 and o3 have a true path distance that is greater than the distance between o1
and oo. To calculate the true path distance we are required to perform a search
for the shortest distance between every object and every other object using an
occupancy grid map. The number of true path calculations required for single-
linkage clustering is constrained by the number of tasks. However, in K-means
clustering every time a cluster centre is changed we are required to recalculate
the distance from the centre to all objects.

To examine the real time requirements of each clustering algorithm we simu-
late an office-like environment with 16 rooms each containing four interconnect-
ing doors that can be independently opened or closed to allow or restrict travel
between rooms (Fig. 1). We test on 25 different fixed configurations of combina-
tions of opened and closed doors. In each configuration we guarantee there is an
open path between each room and every other room. For each configuration we
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test a wide range of total tasks to be clustered |T'| € {16,...,60}. For each task
set we repeat the clustering process for two different values of k, k = %|T | and
k = 2|T|. To calculate the true path cost between tasks we use an A* search on
an occupancy grid map of each office environment with our heuristic being the
straight line distance between the two tasks.

The results of clustering using a straight line distance metric are plotted in
Fig. 7 and the results of clustering using a true path distance metric are plotted
in Fig. 8. These plots show that generally, as expected, single-linkage clustering
completes quicker than K-means clustering. However, when there are a large
number of tasks and k = %\T| single-linkage clustering takes a long period of
time to complete. This is due to the large number of cluster merges required when
k is small. We note that K-means clustering does not suffer this problem as the
stablisation of clusters is independent of the value of k. Finally, we also observe
that the use of a true path distance metric causes both clustering algorithms to
perform about 100 times slower compared to the straight line distance metric.

6 Empirical Analysis using SSC Auctions

We now test each of these clustering techniques with SSC auctions to solve
the multi-robot task allocation problem for both the MiniMax and the Min-
iSum team objectives. Using the clusters formed in Sect. 5 we test homogeneous
mobile robots in teams of varying sizes |R| € {4,6,8,10}. In each of the 25 of-
fice configurations robots are initially positioned in different random locations.
Robots can only travel between rooms through open doors and they cannot open
or close doors. We present the mean results of the maximum distance and the
summation of all distances travelled for the two team objectives in Tables 1, 2,
3 and 4.

The results for SSC auctions with robots bidding according to the MiniMax
team objective are shown for clusters formed with & = |T| in Table 1 and
for clusters formed with k = Z|T'| in Table 2. Both of these result tables show
that generally the use of a true path distance metric results in task allocations
that have lower mean maximum robot travel distances. Overall, single-linkage
clustering with a true path distance metric produces the best task allocations for
this team objective and K-means clustering with a straight line metric performs
the worst.

To confirm the statistical validity of these results we perform non-parametric
one-sided Wilcozon signed-rank tests for each robot/task/cluster combination.
We choose this statistical test as we cannot make distribution assumptions due
to the differences in robot initial locations and the map configurations of opened
and closed doors for each experiment. We seek to confirm that the use of a true
path distance metric in cluster formation results in lower final travel distances
than clusters formed using a straight line distance metric. Our null hypothesis
is defined as Ho : uAirue-path = HAstraight-line and our alternative hypothesis as
Hy : ,U/)\true—path < M)\straight-line-
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Table 1: Mean Maximum Distance for MiniMax Team Objective with k = |T|

Straight Line Metric| True Path Metric

Robots|Tasks|Clusters| K-means| Single-link| K -means|Single-link
4 16 8 995 954 906 874
6| 24 12 983 963 816 7t
8| 32 16 895 921 773 690
10, 40 20 823 870 677 636
4] 20 10 1090 1084 989 932
6| 30 15 1023 1032 888 833
8| 40 20 898 918 802 776
10| 50 25 814 883 745 679
4 24 12 1203 1174 1053 1027
6| 36 18 1117 1094 965 913
8| 48 24 988 983 863 810
10| 60 30 887 886 805 690

Table 2: Mean Maximum Distance for MiniMax Team Objective with k = 2|T|

Straight Line Metric| True Path Metric

Robots|Tasks|Clusters| K -means| Single-link| K -means|Single-link
4 16 11 910 873 864 874
6| 24 16 810 874 750 713
8| 32 21 830 840 727 671
10| 40 27 718 746 669 617
4 20 13 1004 1043 991 917
6| 30 20 932 941 841 826
8| 40 27 818 831 762 731
10, 50 33 752 753 698 652
4 24 16 1015 1154 1029 967
6| 36 24 955 969 936 886
8| 48 32 884 863 840 785
10| 60 40 860 742 724 698

For K-means clustering with k£ = %|T| we get a significant difference with
confidence greater than 0.90 for all robot /task/cluster combinations tested. How-
ever, for K-means clustering with k = 2|7 our results are not significant for all
robot /task/cluster combinations. In particular, our mean results for the config-
uration of 4 robots, 24 tasks, and 16 clusters has true path distances resulting
in a worst maximum distance travelled than the use of a straight line metric.
We speculate that the cause of these non-significant results is due to K-means
clustering seeking to form non-overlapping clusters of geographically close tasks,
whereas robots, in seeking to minimise their path travelled, may not confine
themselves to particular local geographic areas.

Our results for single-linkage clustering have much stronger statistical signif-
icance. For all robot/task/cluster combinations we obtain confidence 0.97 and
greater for both k = 1|T'| and k = 2|T|. Finally, we compare our best and worst
results of single-linkage clustering with true path distances to K-means cluster-
ing with straight line distances. Again for k = |T| we get a very significant



10 Bradford Heap and Maurice Pagnucco

Table 3: Mean Summed Distance for MiniSum Team Objective with k = |T|

Straight Line Metric| True Path Metric

Robots|Tasks|Clusters| K-means| Single-link| K -means|Single-link
4 16 8 2298 2231 2197 2140
6 24 12 2801 2701 2565 2489
8 32 16 3123 3061 2893 2806
10, 40 20 3444 3301 3087 3000
4 20 10 2701 2621 2483 2464
6| 30 15 3239 3083 2943 2850
8| 40 20 3627 3504 3300 3211
10| 50 25 3775 3741 3459 3409
4 24 12 3011 2864 2767 2715
6| 36 18 3511 3464 3272 3258
8| 48 24 3917 3821 3605 3541
10| 60 30 4208 4059 3878 3786

Table 4: Mean Summed Distance for MiniSum Team Objective with k = Z|T|

Straight Line Metric| True Path Metric

Robots|Tasks|Clusters| K -means| Single-link| K -means|Single-link
4 16 11 2232 2178 2142 2117
6 24 16 2642 2640 2519 2501
8| 32 21 3090 3009 2896 2809
10| 40 27 3105 3185 3045 2990
4] 20 13 2636 2569 2495 2460
6| 30 20 3101 3058 2897 2878
8| 40 27 3329 3419 3241 3229
10, 50 33 3626 3500 3446 3375
4] 24 16 2839 2850 2783 2748
6| 36 24 3339 3401 3268 3230
8| 48 32 3813 3643 3551 3350
10| 60 40 4160 3849 3850 3814

result with confidence 0.99 and with k = |T'| we get confidence 0.97. Overall,
we can conclude that using true path distance metrics produces much better
solutions to the multi-robot task allocation problem than straight line distances
for the MiniMax team objective.

Our results for robots bidding according to the MiniSum team objective are
likewise shown for k = 3|7 in Table 3 and for k = 2|7 in Table 4. This data
mirrors our results for the MiniMax team objective with single-linkage clustering
using a true path metric producing the best results and K-means clustering with
a straight line metric the worst.

Again we perform one-sided Wilcoxon signed-rank tests to confirm the sta-
tistical validity of our data. For K-means clustering with k = 1|T'| we confirm a
very significant result with confidence 0.99. However, when tested with clusters
of k = §|T| K-means clustering again fails to deliver a strong statistical confi-
dence. This is despite our overall means showing the use of a true path distance
metric outperforming a straight line distance metric in all robot/task/cluster
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combinations.

For single-linkage clustering we again get strong statistically significant re-
sults. For clusters formed with k = %|T'| we measure a confidence result of
0.995 and for k = %\T | a confidence of 0.95. Finally, we conclude by testing the
significance of the difference between our best performing single-linkage cluster-
ing using true path distances and worst performing K-means clustering using
straight line costs. Comparing k = %|T| we get a confidence of 0.998 and for
k = 2|T)| a confidence of 0.95.

In summary, for both MiniMax and MiniSum team objectives tested, we
have shown the power of using a true path distance metric in the formation
of clusters to solve the multi-robot task allocation problem. Despite our cluster
formation time measurements showing that the use of true path distance metrics
is around 100 times slower than straight line calculations, we believe that the
overall travel distance saved as a result of better clusters far outweighs the extra
initial time spent on cluster formation. Futhermore, it can be argued that the
cluster formation time with a true path metric will be much smaller than the
expected execution time of the robots completing all allocated tasks.

7 Conclusions and Further Work

We have presented an analysis of clustering techniques to solve the multi-robot
task allocation problem using SSC auctions. We have considered the time re-
quired using two different clustering models and the effect of calculating true
path distances instead of straight-line distances in the formation of clusters.
Our empirical results show the benefit of using single-linkage clustering with a
true-path distance metric over other cluster formation techniques.

There remains much scope for future work. Finding a good value for k remains
a challenge. A large k value results in clusters that contain few tasks and, as
such, little inter-task synergy is considered. On the other hand, small k value
results in clusters containing many tasks can lead to robots being allocated tasks
and resultant paths that would be better suited to other robots. A clustering
approach that sought a balance between these two challenges would be ideal,
however, the time complexity may be much greater than our existing approaches.

In a related vein, disparity between the number of tasks contained in each
cluster can lead to clusters containing few tasks being allocated in earlier auction
rounds than larger clusters. Future work could consider the effects when robots
take into account the size of clusters during the formation of bids. Allocating
large clusters first may lead to better solutions than a series of small clusters
being allocated in early auctions rounds.

Finally, we also wish to consider more complicated extensions to the multi-
robot task allocation problem. Of particular interest is the courier delivery prob-
lem which requires robots to pick up and drop off objects. Auctioning clusters of
tasks in this problem domain is much more difficult as we are required to consider
both the pick up and drop off locations of objects when forming clusters.
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