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Abstract. In this paper we study an extension of the multi-robot task
allocation problem for online tasks requiring pickup and delivery. We
extend our previous work on sequential single-cluster auctions to handle
this more complex task allocation problem. Our empirical experiments
analyse this technique in the domain of an environment with dynamic
task insertion. We consider the trade-off between solution quality and
overall planning time in globally reallocating all uncompleted tasks ver-
sus local replanning upon the insertion of a new task. Our key result
shows global reallocation of all uncompleted tasks outperforms local re-
planning in minimising robot path distances.

1 Introduction

Consider a team of autonomous mobile robots operating as courier delivery ve-
hicles in a large office-like environment (Fig. 1). Each robot is required to pickup
from and deliver parcels to a variety of locations around the office building. Each
robot may be constrained to a fixed capacity in the number of parcels it can carry
at any one time and, after a parcel is picked up, it can only be delivered to its
intended destination. Our goal is for the robots to be allocated and deliver all
parcels as effectively and efficiently as possible.

The task allocation problem with pickup and delivery is an extension of the
widely studied multi-robot task allocation (MRTA) problem which, in general,
considers each task as a single location to visit. There are many existing ap-
proaches for solving this class of problem. However, most existing techniques
require that all tasks are static and known before allocation. In many real-world
situations, additional tasks are dynamically discovered during execution.

In this paper we extend our previous work on solving MRTA problems
through auctioning clusters of geographically close tasks [6]. We propose an algo-
rithm for the formation of task clusters based on pickup and delivery locations.
We apply this extended technique to a scenario with dynamically inserted tasks.
We compare these results to a scenario where all tasks are known at the outset.
Finally, we consider the trade-off between solution quality and overall planning
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Fig. 1: A simulation of robots operating in an office-like environment.

time in globally reallocating all uncompleted tasks versus local replanning when
a robot is assigned a previously unknown task.

2 Problem Definition

Multi-robot routing is considered the standard testbed for MRTA problems [2].
We expand the problem formalisation given by Koenig et al. [11] to include tasks
with pickup and delivery. Given a set of robots R = {r1, . . . , rm} and a set of
tasks T = {t1, . . . , tn}. A partial solution to the MRTA problem is given by any
tuple 〈Tr1 , . . . , Trm〉 of pairwise disjoint task subsets:

Tri ⊆ T with Tri ∩ Tri′ = ∅, i 6= i′, ∀i = 1, . . . ,m (1)

Each task subset Tri is then assigned to a single robot ri ∈ R. To determine a
complete solution we need to find a partial solution where all tasks are assigned
to task subsets:

〈Tr1 . . . Trm〉 with ∪ri∈R Tri = T (2)

For tasks with pickup and delivery, the structure of each task t is a tuple
t = 〈lp, ld〉 of a pickup location lp and a delivery location ld. We consider a robot
to be executing a task once it has visited its pickup location and until the point
it has reached its delivery location. Robots may have capacity constraints in
the number of tasks they are able to execute at any moment in time. This is
representative of real robots which may have a fixed maximum number of items
they can carry.

We assume robots have perfect localisation1 and can calculate the cost λ to
travel between locations. The cost to travel between any two locations is equal
across all robots. The robot cost λri(Tri) is the minimum cost for an individual

1 This allows us to focus on the effectiveness of the bidding method.
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robot ri to visit all locations Tri assigned to it. There can be synergies between
tasks assigned to the same robot, such that:

λri({t}) + λri({t′}) 6= λri({t} ∪ {t′}) (3)

A positive synergy is when the combined cost for a robot to complete two tasks
is lower than the individual costs for the robot to complete each task:

λri({t} ∪ {t′}) < λri({t}) + λri({t′}) (4)

Generating a valid solution to the standard MRTA problem is not difficult.
For instance, a simple approach is to assign each task in turn to a randomly
selected robot. However, this approach gives no guarantees on the execution time,
energy or resources used in completing the assigned tasks. Subsequently, the
application of team objectives arises to provide additional guidance in the search
for solutions to the task allocation that meet certain criteria. For instance, some
common desires of a multi-robot system are minimising time spent in execution
of tasks, minimising energy or fuel consumed, and/or even distribution of tasks
across all robots.

Lagoudakis et al. discusses team objectives in detail and their application to
MRTA [13]. In this work we use two commonly used team objectives:

MiniMax min maxri∈Rλri(Tri) that is to minimise the maximum distance any
individual robot travels.

MiniSum min
∑
ri∈R λri(Tri) that is to minimise the sum of the paths of all

robots in visiting all their assigned locations.

The application of these two team objectives to the solving of the MRTA
problem can generate vastly different allocations of tasks to robots. The MiniMax
team objective can be considered as the Min-Max Vehicle Routing Problem or
the Makespan problem and the MiniSum team objective can be considered as a
multi-robot version of the Travelling Salesperson Problem [22].

3 Related Work

3.1 Market-based Task Allocation

Market-based distributed auction algorithms are popular in the robotics commu-
nity for solving standard MRTA problems [2, 9]. An optimal allocation of tasks to
robots can be determined using a single-round combinatorial auction [1]. How-
ever, winner determination in most combinatorial auctions is NP-complete, they
have high communication costs, and are therefore very slow and generally not
used in practical applications.

An alternative approach is sequential single-item auctions (SSI auctions)
which allocate tasks over multiple rounds [13, 10]. Despite SSI auctions producing
team costs that are generally sub-optimal, they have much lower communication
and winner determination costs which result in a quicker allocation of tasks. A
variety of improvements and extensions to SSI auctions have been studied which
trade off allocation time against overall team costs [9].
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A major weakness in non-optimal auction algorithms with one-shot task as-
signments is their inability to avoid local minima. For instance, consider the
bidding rules for the MiniSum and MiniMax team objectives in standard SSI
auctions, when no tasks are assigned to an individual robot the robot will al-
ways bid for the task closest to it which in many situations will not be an optimal
task assignment. Once they have been assigned this task, all subsequent bids will
factor in the inter-task synergies of this task and as a result solutions that are
far from optimal are developed [18].

To refine a task allocation solution post-initial allocation in SSI auctions
Nanjanath and Gini switch the bidding rule from MiniSum to a MiniMax like
approach [16]. Adapting their previous re-auction approach [15] the initial allo-
cation of tasks to robots is done using a standard SSI auction. Then upon each
task completion all uncompleted tasks are auctioned under the requirement of
minimising execution time. Robots only exchange tasks if it improves the overall
team objective and once a task has been exchanged, the robots involved in the
exchange replan their paths to travel.

An alternative approach to improving the solution to SSI auction solution
with capacity constraints is with K -swaps [25]. K -swaps generalise Sandholm’s
previous work on contracts for task exchanges [17] and allow two or more robots
to exchange differing numbers of tasks to reduce the overall team cost. K -Swaps
has been experimentally shown to make significant improvements to task alloca-
tions, however, the algorithm trades off larger improvements with pronouncedly
increased computational time. Furthermore, task swaps and transfers can also
be considered with auctions that incorporate simulated annealing to avoid local
minima [24]. Such approach randomly selects tasks and robots for task exchanges
and calculates probabilities of the task exchange being accepted and over time
can generate an optimal solution.

3.2 Task Clustering

A major computational challenge in the performance of auction mechanisms that
consider inter-task synergies is their ability to handle large numbers of robots
and tasks. In many auction algorithms increasing the number of tasks causes a
combinatorial explosion in the number of calculations required to form task bids.
Further compounding this, as the number of robots increases the communication
and computational requirements for winner determination also increase. As a
result the suitability of these techniques in large real-world scenarios is limited.

Forming clusters of tasks has been explored by a number of researchers as
a method to reduce the combinatorial explosion of increasing task counts. In
early work on market-based task allocation Sandholm expanded the Contract
Net Protocol (CNP) [20] by introducing C-contracts which replace the CNP’s
standard one item contract with a contract for a cluster of tasks all of which
the contracted robot must complete. Sandholm shows that allocating clusters of
tasks to robots can avoid some local minima that single item contracts become
stuck in; although, C-contracts can get stuck in different local minima [17].
In early work on multi-robot auctions, Dias and Stentz developed a clustering
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algorithm that connects geographically close tasks under the assumption that
two tasks that are close have high inter-task synergies, robots then exchange
clusters of tasks through an auction method which experimentally is shown to
perform better than single task auctions [3].

Many subsequent clustering approaches for MRTA problems use the dis-
tance between tasks as a metric for cluster formation. Sariel and Balch discuss
the allocation of clusters of tasks to robots where in some situations optimal
MRTA solutions can be generated that are unable to be formed using single
item auctions, however, in other situations clustering performs worse [18]. Zlot
and Stentz use K -means clustering to form clusters of geographically close tasks.
To determine an ideal cluster, the value of k is incremented from 2 to the total
number of tasks with the value of k generating clusters with the largest relative
improvement over the previous value being used [26].

In our previous work [6, 8], we expanded upon SSI auctions to develop se-
quential single-cluster auctions (SSC auctions). In SSC auctions a clustering
algorithm forms fixed clusters of geographically close tasks which robots sub-
sequentally bid on using an SSI-like auction technique. Auctioning clusters of
tasks reduces the numbers of bids required and thus reduces the communica-
tion overhead. This work also demonstrates that repeatedly forming clusters
with different task memberships allows robots to consider many combinations
of inter-task synergies that are not considered during SSI auctions which only
allocate tasks once.

3.3 Dynamic Task Insertion

Despite a large body of work on auction-based algorithms for MRTA problems,
few papers have considered the effects of dynamically appearing tasks in the
problem domain. While it can be argued that algorithms that continually change
task allocations could handle dynamically inserted tasks, this has little experi-
mental grounding. An important consideration in the handling of dynamic tasks
is deciding how much of the existing task allocation to modify. This can range
from an individual robot locally replanning its task execution plan, through to
all robots running auctions for a global reallocation of all uncompleted tasks.

Previous work by Schoenig and Pagnucco has considered SSI auctions with
dynamically inserted tasks and compared the costs of robots bidding only for the
new task versus a full new auction of all uncompleted tasks [19]. Their results
show, despite a large trade-off in computational time, a global reallocation of
tasks produces lower team costs than local replanning. Zlot et al. consider MRTA
problems in an exploration domain in which a robot generates additional tasks
for allocation after each task completion. These tasks are sequentially offered for
auction to other robots, however, if no buyer is found the generating robot retains
the task [27]. Viguria, Maxa and Ollero’s approach of repeatedly auctioning
subsets of uncompleted tasks allows it to handle dynamically inserted tasks
[23]. This approach sits between local replanning and global reallocation in that
robots only offer for auction tasks that they specifically consider to be of high
cost. Additionally, these approaches avoid the problem of never completing any
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tasks through ensuring that the currently executing task is never offered for
reallocation.

3.4 Tasks with Pickup and Delivery

Little work has focused on distributed auctions for MRTA problems with pickup
and delivery. While it can be argued that many existing techniques for single
point locations should continue to work for tasks with pickup and delivery this
has almost no experimental grounding. Despite this, a large body of work exists
in the field of transport logistics.

Fischer, Müller and Pischel apply the CNP to transportation scheduling with
fixed time windows [5]. In this work trucks bid for tasks from a central controller
and can also make one-for-one swaps with other trucks before they begin to exe-
cute their plans. During the execution of plans, the trucks may face traffic delays
and as such they can locally replan their routes or auction their uncompleted
tasks. Their results show that global reallocation of uncompleted tasks provides
a large reduction in distance travelled.

Kohout and Erol argue that Fischer, Müller and Pischel’s generation of an
initial allocation is poor and therefore global reallocation will produce much
better results than local replanning [12]. In their analysis they study problems
where multiple items can be transported together and additional jobs are an-
nounced sequentially. When a new job is announced each vehicle bids for the job
according to the cost of completing the additional job relative to their existing
commitments. To avoid problems where inserting additional tasks has large im-
pacts on the completion time of other tasks, upon each task insertion, already
scheduled tasks are permitted to be reallocated to other vehicles. In their empiri-
cal analysis they compare this approach to Solomon’s insertion heuristic which is
a popular operations research based approach [21]. Overall they show that their
distributed approach is statistically equivalent to the centralised operations re-
search approach.

In a similar vein, Mes, van der Heijden and van Harten compare distributed
auctions in MAS to hierarchical operations research approaches in dynamic en-
vironments [14]. In this work tasks are arrive sequentially and trucks can only
carry one task at a time. Each truck bid calculation for a task considers the time
required to do the job and any waiting time between jobs before and after. Dur-
ing execution trucks can also swap future task commitments between each other
to improve the overall solution. In the comparison to the operations research
approaches the distributed auction approach performs substantially better in
highly dynamic environments.

4 Repeated SSC Auctions with Dynamic Tasks

We now formally explain SSC auctions and provide a simple extension to handle
dynamically appearing tasks. SSC auctions assign fixed clusters of tasks to robots
over multiple bidding rounds. In Fig. 2 an algorithm describing this process is
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function SSC-Auction (U ,Kri , ri, R)
Input: U : the set of clusters to be assigned

Kri : the set of clusters presently assigned to robot ri
ri: the robot
R: the set of robots

Output: Kri : the set of clusters assigned to the robot

1: while (U 6= ∅)
2: /* Bidding Stage */
3: βmin ←∞
4: for each cluster C ∈ U
5: βC

ri ←CalcBid(Kri ,C);
6: βmin ←min(βmin, β

C
ri);

7: Send(βmin, R) | B ←
⋃
i

Receive(βC
ri , R);

8: /* Winner-Determination Stage */
9: (r′, C) ← arg min(r′∈R,C∈U) B;

10: if ri = r′ then
11: Kri ← Kri ∪ C;
12: U ← U\C;

Fig. 2: Algorithm for Sequential Single-Cluster Auctions [8].

given. During the bidding stage (Lines 2-7) the robot calculates bids for every
unassigned task cluster and submits its single lowest bid for any one cluster
to all other robots. Each bid is a triple β = 〈ri, Cj , bλ〉 of a robot ri, a task
cluster Cj and a bid cost bλ. Each bid calculation requires robots to provide
a solution to the travelling salesperson problem taking into account the tasks
they already have allocated and the tasks in the cluster for which they are
calculating a bid. Because this problem is NP-hard, robots may use the cheapest-
insertion heuristic to provide a close approximation to the optimal solution. At
the conclusion of each bidding round (Lines 8-12), one previously unassigned task
cluster C = {t1, . . . , to} is assigned to the robot that bids the least for it so that
the overall team cost increases the least. After all task clusters K = {C1, . . . , Ck}
are allocated, each robot seeks minimise the distance travelled to complete all
its allocated tasks. To achieve this, robots do not have to do all tasks in a cluster
sequentially. When a robot is awarded a new cluster, the robot adds the tasks
in this new cluster to its existing task assignment and replans its path to travel.

Before the SSC auction algorithm begins each task is assigned to one, and
only one cluster, and clusters can be of varying sizes. All robots are informed of
all tasks and all clusters before calculating bids. For the initial task allocation,
either a centralised task manager or a single robot generates task clusters and
subsequentally informs all robots of the details of each cluster. During repeated
auctions each robot individually forms clusters of its uncompleted tasks. After
removing any clusters containing tasks that are currently being executed, each
robot informs all other robots of their available clusters for auctioning (a for-
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Fig. 3: Four tasks clustered into two
pickup task clusters.
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Fig. 4: Formation of three final task
clusters based on delivery locations.

malisation of this algorithm is given in [8]). While the auction for uncompleted
task clusters runs, all robots in parallel, continue to complete their currently
executing tasks.

To handle a new task tn dynamically inserted into our system we must ensure
that the valid complete solution to the task allocation problem ∪ri∈RTri = T
continues to hold for ∪ri∈RT ∪ {tn}ri = T ∪ {tn}. The simplest way to meet
this requirement is upon the dynamic insertion of a new task instantaneously
assigning it to a robot ri ∈ R. Depending upon the operating enviornment
configuration, after the assignment the robot can either locally replan its path
or can signal a repeated auction to globally reallocate and replan tasks across
all robots. In our experiments a new task may be inserted immediately after a
task delivery and is initially allocated to the robot that completed the delivery.

The formation of clusters of tasks that have both pickup and delivery lo-
cations is much more difficult than cluster formation in single task location
problems. To generate low cost solutions to MRTA problems with pickup and
delivery we need a clustering algorithm that considers the structure of tasks in
the problem. In the development of our clustering approach, we considered three
different approaches for generating a metric that describes each task. First, we
attempted to cluster based on the midpoint of the line segment between the
pickup and delivery location. However, this metric lacks any information about
where either end point is located. Second, we attempted to cluster by forming
vectors of pickup and delivery locations and chaining tasks that have a delivery
location close to the pickup location of another task. This approach to clustering
closely matches the bidding pattern of robots in auctions, and as a result, there
would be no advantage over doing no clustering at all.

Our third, and successful, approach was to cluster the pickup and delivery
locations of all tasks separately. First, we form clusters of tasks based on pickup
locations (Fig. 3). Second, within each pickup location cluster we cluster again
into smaller clusters based on delivery locations (Fig. 4). The complete set of all
small clusters is then used by robots in bidding. We formulate this algorithm in
Fig. 5. We begin with no final clusters set (Line 1). We initially cluster all tasks
based on pickup location (Line 3). We then iterate over each of these pickup
location clusters (Line 5). Within each pickup location cluster we cluster again



Repeated SSC Auctions with Dynamic Tasks 9

function TwoStepClustering (T , kp, kd)
Input: T : the set of tasks to be clustered

kp: the number of pickup clusters to be formed
kd: the number of delivery clusters to be formed

per pickup cluster
Output: K: the set of clusters for auction

1: K = ∅;
2: /* Pickup location clustering */
3: PickupClusters ← CalcPickupClusters(T ,kp);
4: /* Delivery location clustering */
5: for each pickup cluster p ∈ PickupClusters
6: DeliveryClusters ← CalcDeliveryClusters(p,kd);
7: K ← K ∪ {DeliveryClusters};

Fig. 5: Clustering of tasks with pickup and delivery.

based on delivery location (Line 6). Finally we merge each set of delivery location
clusters into the final set of clusters for auction (Line 7).

Both clustering functions CalcPickupClusters and CalcDeliveryClusters con-
sider only one side of a task’s location. This allows us to use any existing clus-
tering algorithm that clusters based on point locations, e.g., K -means clustering
or single-linkage clustering. In our algorithm we need two k values kp and kd;
one for each clustering function. For our experiments we seek to find k overall
clusters for auction such that kp ∗ kd = k. This ensures that each pickup cluster
is split into equal numbers of delivery clusters. However a problem can arise,
due to each cluster containing a varying number of tasks, when considering the
clustering of delivery locations inside a pickup cluster. If the number of tasks
in the cluster |p| is less than kd we can only form |p| clusters, and as a result,
in total we will have less than k clusters. Without modifying the behaviour of
the algorithm used to form the pickup clusters we cannot prevent this occuring.
As a result, in these situations we end up with fewer clusters than we initially
sought. To mitigate the effect of this during the formation of a large number of
clusters we suggest a novel solution to gradually increase the value of kd used in
remaining cluster formations:

kd = kd +
kd − |p|

|remaining pickup clusters|
(5)

First we calculate the difference between the requested number of clusters kd
and the number of tasks in the cluster |p|. We then divide this by the number
of remaining pickup clusters that have yet to have delivery clusters formed in-
side them. We add this value to kd and continue to the next pickup cluster for
clustering.
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5 Empirical Experiments

We test SSC auctions with dynamic tasks requiring pickup and delivery in a
simulated 510x510 grid-based office-like environment with 16 rooms. Each room
contains four doors that can be independently opened or closed to allow or re-
strict travel between rooms (Fig. 1). This environment has become the standard
testbed in recent literature [11, 25, 16, 6, 8]. In each experiment, the doors be-
tween different rooms and the hallway are either open or closed. We test on 25
randomly generated configurations of opened and closed doors with each robot
starting in a different random location. Robots can only travel between rooms
through open doors and they cannot open or close doors. However, it is guar-
anteed there is at least one path between each room and every other room. For
each configuration we test with 10 robots and 60 tasks. We use single-linkage
clustering with a true path distance metric (previously discussed in [7]) for our
clustering algorithm. For the initial allocation we form k = 1

2 |Tknown| clusters
and where Tknown ∈ T is the set of known tasks at the start of the initial allo-
cation. For repeated auctions each robot individually forms k = 1

2 |Tri | clusters.
In each experiment configuration a robot may be randomly assigned a new

task upon completion of a task delivery, we then compare local replanning versus
global reallocation. In local replanning, when a robot is assigned a new task, the
robot replans its path to complete all uncompleted tasks. In global reallocation,
when a robot is assigned a new task it signals to all other robots to begin an
auction of all uncompleted tasks across all robots. We compare three ratios of
dynamic to static tasks, 25%, 50%, and 75% unknown at the start. We also
compare our results to a baseline one-off task allocation with all tasks known.
Finally, we compare the effects of different robot task capacities of 1, 3, and 5.

The mean results for the MiniMax team objective are presented in Table 1
and for the MiniSum team objective in Table 2. In considering capacity con-
straints, unsurprisingly, the absence of constraints produces the lowest team
costs and the more restrictive the constraints the higher the cost. This directly
leads to the largest reduction in team costs occurring in scenarios with highly
restrictive constraints. In both team objectives, when robots are restricted to a
capacity of only executing one task at a time, the global reallocation of tasks pro-
duces better results than the baseline of all tasks known. While this may initially
come as a surprise it has been experimentally shown before in SSC auctions with
static tasks [8] and SSI auctions with dynamic tasks [19]. The key explanation
for this is that during a one-off task allocation, due to the greedy nature of SSI
auctions, each robot can reach a local minima in its bidding preferences whereas
in repeated auctions this is avoided. Overall, across both team objectives, global
reallocation generally produced lower overall results than local replanning.

Across the MiniMax team objective results, the average advantage of global
reallocation over local replanning ranges from 11.8% to 36.5%. For local replan-
ning the best results occur when 50% of tasks were unknown. We speculate that
in situations where 25% of tasks are unknown, despite being “better informed”
of other tasks during planning, there may be instances where new tasks are in-
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Table 1: Mean MiniMax Team Objective Results (percentage improvement of
reallocation compared to replanning in brackets).

Local Replanning

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 7857 8228 7276 7275

3 3985 5430 4976 6256

5 3070 4620 4471 6250

∞ 2602 4438 4418 6250

Global Reallocation

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 7857 5228 (36.5%) 5593 (23.1%) 5911 (18.7%)

3 3985 3800 (30.0%) 4389 (11.8%) 4877 (22.0%)

5 3070 3469 (24.9%) 3800 (15.0%) 5000 (20.0%)

∞ 2602 3415 (23.1%) 3810 (13.8%) 5165 (17.4%)

Table 2: Mean MiniSum Team Objective Results.
Local Replanning

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 41539 41527 42025 45305

3 21245 26922 28316 33238

5 16519 22554 25720 30096

∞ 10150 16613 19675 27985

Global Reallocation

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 41539 37449 ( 9.8%) 40278 (4.2%) 36907 (18.5%)

3 21245 25775 ( 4.3%) 28303 (0.0%) 26594 (20.0%)

5 16519 22639 (-0.4%) 24692 (4.0%) 22238 (26.1%)

∞ 10150 17813 (-7.2%) 22207 (-13%) 20332 (27.3%)

serted late into plan execution which cause robots to travel greater distances.
This hypothesis is further supported by the large improvement gains shown by
global reallocation in the 25% unknown experiments. Across the global replan-
ning results the best results occur when only 25% of tasks are unknown. We
speculate that in these instances the advantage of being “better informed” of
other tasks helps with the formation of new clusters and repeated auctions of
tasks. Overall, in the worse case of 75% tasks unknown, on average, a robot
travels a maximum of twice the distance of the baseline result.

The MiniSum team objective results show a much smaller benefit in global
reallocation over local replanning. These differences range from a 13% increase
to a 27% decrease in total distance travelled. Local replanning produces the
best results when only 25% of tasks are unknown at the start. Contrarily in
global reallocation, the largest improvements overall local replanning come in
the highly dynamic environment of 75% of tasks being dynamically inserted. We
speculate that the reason for this is due to the high numbers of repeated cluster
formations exposing many different inter-task synergies during each repeated
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Table 3: Mean Initial Task Allocation Computation Time (s) For MiniMax Team
Objective.

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 268 145 62 16

3 265 145 61 16

5 264 144 61 16

∞ 242 137 60 16

Table 4: Mean Overall Cumulative Task Allocation Computation Time (s) For
MiniMax Team Objective.

Local Replanning

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 268 173 90 41

3 265 172 89 42

5 264 171 88 42

∞ 242 157 85 41

Global Reallocation

Capacity All Known 25% Unknown 50% Unknown 75% Unknown

1 268 347 276 119

3 265 245 175 106

5 264 226 176 105

∞ 242 206 174 105

auction. Additionally, in scenarios with no capacity constraints local replanning
outperforms global reallocation. Again, in the worst-case scenario the maximum
distance result was twice that of the corresponding baseline result.

In addition to measuring the distances robots travel, we also consider the
amount of computational real-time robots require to generate an initial allo-
cation of tasks, and then the accumulated time required to repeatedly replan
or reallocate tasks. The experimental timing results are from a system with a
2.8GHz Intel Core i7 CPU, 8GB RAM, running Ubuntu 11.04 x64.

Table 3 shows the mean time required to cluster and auction an initial al-
location of tasks for the MiniMax team objective. The results for the MiniSum
team objective are not shown, however, they are near identical. Unsurprisingly,
the fewer the number of tasks known, the faster the initial allocation of tasks.
In the most dynamic situation the generation of an initial allocation is 15 times
quicker than the baseline. This is an important result because the quicker an
initial allocation is generated, the sooner robots can begin executing tasks. We
also note that the task capacity constraint has minimal influence upon the time
required to generate the initial allocations.

The overall cumulative time required for robots to replan or reallocate upon
the insertion of all dynamic tasks into the system is given in Table 4. In the
worst-case, global reallocation of tasks is three times slower than local replan-
ning. Of particular interest is that in all dynamic situations, local replanning was
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substantially quicker in computational time than the baseline. Also in highly dy-
namic situations global reallocation generated solutions faster than the baseline.

Overall, taking into consideration mean distance and computational time
results we can conclude that when robots seek to achieve a MiniMax team ob-
jective it is best for robots to work together and globally reallocate tasks. How-
ever, when robots seek to achieve a MiniSum team objective, except in highly
dynamic environments, the small improvement offered by global reallocation is
offset by much higher computational times and in many situations would be of
little benefit.

6 Conclusions and Future Work

In this paper we have built upon previous work on SSC auctions and demon-
strated their effectiveness in task allocation with pickup and delivery. Our em-
pirical analysis considered the trade-off in performance between local replanning
and global reallocation for dynamic task allocation. Our key result shows that
global reallocation generally produces lower team costs than local replanning.
However, to achieve this there is a large computational time cost.

In the consideration of future work, an ongoing challenge in cluster forma-
tion is determining suitable values for k. There are a number of more complex
clustering algorithms that do not require a pre-set number of clusters to form,
such as DBSCAN [4], and their usefulness in SSC auctions could be considered.
Another aspect of clustering to consider is the number of items in each cluster.
At present we impose no limit on the number of items, or any preference to al-
locating large clusters first. If a fixed maximum limit on the number of items in
each cluster was imposed it could produce more even clusters which may affect
the task allocation results.
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