
Combining Career Progression and Profile
Matching in a Job Recommender System

Bradford Heap, Alfred Krzywicki, Wayne Wobcke, Mike Bain
and Paul Compton

School of Computer Science and Engineering
University of New South Wales
Sydney NSW 2052, Australia

{bradfordh,alfredk,wobcke,mike,compton}@cse.unsw.edu.au

Abstract. In this paper we consider the problem of job recommenda-
tion, suggesting suitable jobs to users based on their profiles. We compare
a baseline method treating users and jobs as documents, where suitability
is measured using cosine similarity, with a model that incorporates job
transitions trained on the career progressions of a set of users. We show
that the job transition model outperforms cosine similarity. Furthermore,
a cascaded system combining career transitions with cosine similarity
generates more recommendations of a similar quality. The analysis is
conducted by examining data from 2,400 LinkedIn users, and evaluated
by determining how well the methods predict users’ current positions
from their profiles and previous position history.

1 Introduction

Searching for a new job is a difficult and time consuming process. The most
common approach is for a user to enter search terms into a job search website.
These search terms return a list of matched job advertisements which the user
then self-evaluates [1]. While this method gives users fine control over finding
potential jobs to apply for, users are unable to assess if they are amongst the
most qualified or suitable for the desired job.

A job recommender is designed to match jobs to users, removing the need
for manual search. The recommender should evaluate a user’s suitability for jobs
and recommend those that advance a user’s career. Additionally, a recommender
should ensure that jobs that are irrelevant, or for which the user is either over-
or under-qualified, are not recommended. However, building a job recommender
system using standard recommendation techniques is a challenging problem [9].

This work seeks to build a recommender that learns to predict career ad-
vancement from the job histories of other users. Our key contribution is the
development of a recommender that is modular and uses a number of strategies
to generate recommendations that promote career advancement. A core focus
on this work is ensuring the developed system is able to be practically deployed
and we do not suggest systems that could perform well but would have excessive
processing costs. Through empirical evaluation we show that our recommender

system performs better than a baseline term-based recommender system.
As identified by Malinowski [7], job recommendation is characterized by bidi-

rectional preferences, in that, while users have preferences for the jobs they de-
sire, employers also have preferences for the candidates they interview or employ.
Thus a job recommender needs to be a reciprocal recommender [8], taking into
account the preferences of both parties. In this respect, job recommendation is
similar to recommendation in online dating [3], however there are differences:
(i) the turnaround time for job applications is typically much longer than in
online dating, due to the need for employers to follow a well defined selection
process, and (ii) employers may choose to interview only very few candidates out
of many suitable, and typically employ only one. This results in an even greater
sparsity of data available on the suitability of candidates for jobs. Data sparsity
means that collaborative filtering, which works well in online dating settings [4],
is more difficult to apply in job recommendation. Hence in this paper we focus
on content-based recommendation algorithms for suggesting jobs to users based
on their profiles and the job transitions of other users.

Datasets on candidates applying for jobs are difficult to obtain. In this work,
we evaluate recommendation methods on a proxy problem, that of whether the
method can identify a person’s current position given their user profile, which in-
cludes their previous position history. We use data collected from 2,410 LinkedIn
users (the one and two-step contacts of the authors and their colleagues). Be-
ing from LinkedIn, the dataset includes many IT professionals, however, also
includes users from a variety of other fields, such as academia, healthcare, mar-
keting, accounting, finance, management and HR. The data was collected over
two distinct periods in 2013 and 2014 during which a number of users added new
positions: users with these position titles were used as the test users, with their
current position the target for prediction based on their earlier position history.
Thus the recommenders make use only of information available in user profiles
before their current position was commenced.

2 Research Motivation and Problem Description

Measuring the suitability of a user to a job is a difficult problem. In existing sys-
tems, it is common for similarity to be measured by matching keyterms extracted
from previously viewed job advertisements [10, 1, 5] or a user’s CV [7]. Both of
these approaches to extracting keyterms have drawbacks. Using terms extracted
from other job advertisements may be representative of a user’s desires but it
fails to consider the user’s skills, qualifications and experience. In contrast, CVs
generally consist of short summaries of a user’s previous positions where the lan-
guage used may differ vastly from the terminology used in job advertisements.
For instance, a user may describe themselves as having “a deep understanding
of Object Oriented Programming principles” where a job advertisement may be
seeking someone with “technical experience in Java/Groovy/Python application
frameworks”. In this instance, as there are no terms in common, a simple term-
based similarity measure would find no similarity between these two descriptions.

Sr. Recruiter (Hardware and Technology)
• Highly motivated Recruiter/Sourcer

with 15 years of staffing experience
who will generate a high volume/high
quality pipeline of candidates

• Strong strategic and independent
thinker . . .

• Proficient with MS Office, recruiting
databases and HRMS systems

• Specialties: Recruiting, Sourcing and
Talent Acquisition Operating Systems:
UNIX/HP-UX/Solaris/Linux,
Windows NT/XP Languages: C/C++,
Java, XML, Javascript, PHP, PERL,
C#, Python, Ruby Databases:
Oracle, SQL . . .

Javascript Developer
An experienced native Javascript
developer is required . . .
Solid experience of the following
technologies is needed:
• Strong programming skills in

JavaScript
• HTML and XHTML, XML, CSS
• Working knowledge of relational

databases and SQL
• Strong commitment to quality and

customer success,
• Proven experience working with

media and high traffic applications

Fig. 1: Example of Keyterm-Based Matching.

However, clearly there is some semantic similarity, and the user potentially has
the skills for the advertised role. Furthermore, even in instances with many over-
lapping terms, poor quality recommendations can still be made if the context of
terms is ignored. For instance, the skill of networking required for a sales man-
ager is different from the skill required for a systems administrator.

An example that highlights a number of these issues is given in Fig 1. On
the left is an excerpt from a user’s profile, an HR professional who specialises in
recruiting for IT jobs. On the right is a job advertisement for a programming role.
Clearly this user is unsuitable for this role. Unfortunately, if we extract keyterms
from both sets of free-form text (underlined terms) and then take the intersection
of the two documents (bold terms) there are 8 common terms. Given that the job
advertisement only has 21 extracted terms, using term-based profile matching
the similarity between this user and the job advertisement is high. Examples like
this are not uncommon, and highlight how difficult good term-based similarity
matching can be in this domain. For many users these keyterm matches may be
very good, especially if they work in the field of software development. However,
this user is compromised by including many keyterms describing the detail of
their work and few describing the higher level details of their role as a recruiter.

2.1 Problem Formalisation and Definitions

We now formalise the problem of recommending jobs to users. A position p is
held by a user u. Each position is a tuple p = 〈T,D, s〉 of a position title T ,
a position description D, and a start date s. Position titles and descriptions
are treated as sets of keyterms t, T = {t1, . . . , tm}, D = {t1, . . . , tn}. A user’s
position history Hu is a list of all positions currently or previously held ordered

by start date Hu = [p1, . . . , po]. All user profiles are contained in the set U =
{H1, . . . ,Hi}. A job advertisement is a tuple j = 〈T,D〉 of a position title T
and a position description D. A set of job advertisements for recommendation is
J = {j1, . . . , ji}. A recommendation r is a tuple r = 〈u, j, σ, f〉 of a user u, a job
advertisement j, a score σ, and a signal flag f . The purpose of the signal flag
is to indicate the level of trust and distinctiveness in a recommendation. The
signal flag can be set as strong or weak. Recommendations with strong signals
are considered to be of higher value than those with weak signals.

2.2 Dataset Description

A user’s profile on LinkedIn contains user authored free-form titles and sum-
maries of current and former positions held. For our purposes, we ensure that
each user profile in the dataset has at least two positions. To ensure positions
in our dataset represent real jobs, we automatically validate each position title
against a list of 5,599 distinct job titles, and remove any users with non-standard
positions (e.g., company owners, founders, board members) as these jobs are not
typically advertised. Finally, we ensure that each position description contains at
least two distinct keyterms. In total, our dataset covers 2,410 candidate profiles
consisting of 6,534 unique positions currently or previously held.

To extract keyterms from the user authored free-form text, we use the Apache
OpenNLP library1 to extract both single nouns and compound noun phrases.
Using both single and compound noun extraction allows us to make partial
matches on compound noun phrases. For instance, the compound term software
developer will additionally be split into two single nouns, software and developer,
allowing a partial match to the term software engineer. This approach allows us
to generate more keyterms per profile allowing us to generate more potential
matches for recommendation.

3 Recommender Construction

3.1 Baseline Term-based Similarity Recommender

We first develop a baseline term-based recommender. This recommender gener-
ates recommendations if there is overlap between the terms in a user’s position
history and a job advertisement. Similarity is measured using cosine similarity,
treating both as documents, and is given as a score between 0 and 1 of how
closely a user’s position history matches a given job advertisement. The higher
the value, the greater the number of common terms between the user’s position
history and the job advertisement relative to the number of terms in both.

An important feature of cosine similarity is the calculation of the normal of
the length of both the set of user’s keyterms and job advertisement keyterms,
as this reduces the influence of user profiles with excessive keyterms generating
matches with high scores (e.g., Fig. 1). Additionally, because this recommender

1 https://opennlp.apache.org/

will generate a recommendation even if only one term is in common, many
recommendations will be generated for each user.

Formally, let D be the set of all keyterms occurring in the titles and descrip-
tions of positions in a user’s position history Hu ∈ U and J = Tj ∪Dj be all the
the terms in the title and description of a job advertisement j ∈ J . The cosine
recommendation score σu,j of this user to the job advertisement is then:

σu,j =
|D ∩ J|√
|D| × |J|

After the cosine similarity is calculated for all job advertisements, the recom-
mender then returns a ranked list of recommendations R = [r1, . . . , rk] ordered
by similarity score from highest to lowest. As there is no simple way to identify
matches which are more distinctive than others, all recommendations made by
this method are assigned a strong signal.

3.2 Career Transition Job Recommender

The career transition job recommender is designed as a cascaded system of rec-
ommendation modules, in which each module is an independent recommendation
system (similar to Burke [2]). Each module explicitly generates recommendations
of jobs for a user and each recommendation made contains a score which seeks
to measure the strength of this recommendation. After recommendations are
generated, a multiplexer is used to combine the recommendations made by each
module and return a ranked list of final recommendations. Finally, if the number
of recommendations made is below a preset threshold, the baseline cosine recom-
mender may be called to supplement the number of recommendations produced.
Fig. 2 is an overview of the modules and the cascaded design of the system.

In each module, a recommendation is flagged as a strong or weak signal rela-
tive to the other recommendations generated by the same module. Initially, any
recommendation generated is considered to be a strong signal. However, if the
total number of recommendations generated by a module, or a sub-component
of a module, exceeds the preset signal limit then all recommendations generated
by that module, or sub-component, are flagged as a weak signal. This identifies
modules generating many low quality recommendations for a particular user.

Title Transition

Title Description
Matching

Description-
Description Matching

Recommendation
Multiplexer

Cosine
Supplementation

Fig. 2: Cascaded Career Transition Job Recommender.

Table 1: Excerpt of Title Transition Terms for Software Developer.
Previous title term Transition title terms

software developer senior, programmer, analyst, analytics, developer

software engineer, developer, senior, technical, specialist

developer engineer, senior, software, specialist, ios

After a module generates a set of recommendations, they are sent to the
multiplexer. The multiplexer merges together the sets of recommendations from
each module. If equivalent recommendation pairs (that is, where 〈u, j〉 ∈ r =
〈u, j〉 ∈ r′) are generated in different modules, they are aggregated into a sin-
gle recommendation. To aggregate equivalent recommendations, the scores from
each individual recommendation are added together and the maximum strength
of the signal flags is used to form a final recommendation. The multiplexer only
allows recommendations with strong signals to be returned, except that after ag-
gregation, any weak signal recommendations with scores that exceed the largest
strong signal recommendation score are promoted to strong signal recommenda-
tions. This ensures that any recommendations that have been generated as weak
signals by multiple modules but have a large cumulative score are also returned.

We now describe each of our recommendation modules:

Title Transition Module This module contains two sub-components which
evaluate the similarity of an advertised job title to a user’s current and previous
job title terms. The first of these sub-components, term consistency, seeks to
maintain the status quo and considers each keyterm in a user’s job title and
assumes that this remains the same in a new job. Formally, let T be the set of all
key terms occurring in the position titles in a user’s position history. The terms
in common with an advertised job title Tj∈J is the set T ∩ Tj .

The second component, term transition, uses a table built from the set of all
user position histories U to suggest new title terms based on the user’s current
and previous title terms. The rows of the transition table are pairs of title terms
〈t∈Tpi

, t′∈Tpi+1
〉 where pi, pi+1 are successive positions in a user’s position history

Hu. To avoid spurious term transitions, we ensure at least two different position
transitions support the same term transition pair. Every title term in a user’s
position history t ∈ T is then used to generate the set of transition terms Ts
which is then combined with the terms from an advertised job title to find the
similarity Ts ∩ Tj .

Using individual keyterms in this module, rather than full titles, allows both
the term consistency and term transition sub-components to generate many
possible job recommendations. For instance, a user with the job title software
developer will be recommended jobs by the term consistency sub-component
that contain either software or developer in their title. The term transition sub-
component will then suggest other possible job title terms. Table 1 gives an
excerpt of these transition terms. This gives us an insight into how title terms

transition between roles. For instance, we note that all three terms have tran-
sitions to the new term senior. This suggests that users who have the role of a
software developer commonly transition into a job with senior in the title. Ad-
ditionally, this table shows a close relationship between the terms software and
developer, as the two terms are suggested as transitions from one to the other.

Title Description Matching Module This module assumes that terms ap-
pearing in the titles of a user’s previous positions influence their next position
description. We assume that words in a user’s previous position titles are key
descriptors of their roles and it is common for future roles to have some over-
lap in responsibilities with past roles. Consider a user whose previous position
titles are business analyst and systems architect who applies for the position of
project manager. Despite no terms in common between these position titles, it
can be expected that the position description for the project manager role would
include the words business and systems.

For this module to generate a recommendation, there must be at least two
terms in common. The terms in common between the title terms in a user’s
position history and a job description is the intersection T ∩ Dj . In general,
it can be expected that this module will generate similar recommendations to
the title transition module. However, unlike the title transition module which
uses 1-to-1 term matching to make recommendations, through the merging of all
title terms in a user’s position history, this module combines information from
a number of previous job titles to make recommendations.

Description-Description Matching Module The third module measures
the similarity between the description terms in a user’s position history and
a job description. The core of this module is the same as the baseline cosine
similarity recommender. However, the recommendation scores are limited to a
maximum similarity score. As this module generates a very high number of rec-
ommendations, the recommendations are generally flagged as weak signals and if
they are only generated by this module they discarded by the multiplexer. More
commonly, the scores assigned to recommendations generated by this module
are aggregated by the multiplexer with recommendations generated in the other
modules to boost strong signal recommendation scores.

Module Recommendation Scoring and Signal Limits Each module is re-
sponsible for scoring their generated recommendations relative to their own as-
sessment criteria – generally as a proportion of the number of terms in common.
The higher the score, the more relevant the module determines this recommen-
dation to be. Each module and sub-component is limited to a maximum score
it can assign to any individual recommendation. Table 2 shows the maximum
scores for each module and sub-component in our system. We set these scores
according to the ratio of the total number of recommendations generated and
the total correct recommendations made by each module (in future work these

Table 2: Module Scoring
Module Max Score Signal Limit

Title Transition: Term Consistency 250 20%

Title Transition: Term Transition 100 20%

Title Description Matching 200 10%

Description-Description Matching 800 10%

Cosine Supplementation 150 -

Fig. 3: Effect of Signal Limit on Low Score Recommendations.

scores could be learned). This table also shows the signal limit for each module.
The signal limit is a proportion of all possible recommendations that can be
generated.

Fig. 3 shows the effect of signal limitation. The shaded area of the histogram
shows the frequency of scores from recommendations made after the application
of the signal limit. The unshaded frequencies show the number of recommenda-
tions and distributions of scores without any signal limitation. This demonstrates
clearly that the application of the signal limit prevents many recommendations
with low scores from being made. This ensures that recommendations in the
final set of recommendations made have a high level of distinctiveness.

4 Experimental Evaluation

We measure the relative performance of our career transition job recommender
against the baseline term-based recommender using 10x2-fold cross-validation.
It should be noted that these recommenders are measured against the positive
ground truth only, that is, where there is one exact match for each user/job rec-
ommendation pair, and the goal of recommendation is to cover as many of these

Table 3: Recommender Results for 10x2-fold Cross-validation.
All Recommendations Top-N Recommendations

Generated Recall N = 5 N = 10 N = 20 N = 40

Cosine Baseline 49.9% 79.4% 27.1% 31.3% 36.8% 43.0%

Career Transition 13.3% 52.1% 29.5% 34.0% 38.3% 42.8%

Career Transition + Cosine 30.6% 65.8% 29.5% 34.1% 38.5% 43.3%

pairs as possible. This is because it is not established that a user would definitely
not be interested in alternative jobs if they were recommended, and hence such
recommendations should not be regarded as false positives (in fact, such jobs are
often quite similar to those in the ground truth pair). Therefore the core metric
that we use to measure the performance of our recommenders is recall. Recall
is the proportion of user-position pairs from the test dataset predicted correctly
by recommendations. Using the ranking of recommendations according to their
similarity score, we report recall for the top N recommendations for various
values of N .

4.1 Results

Table 3 shows the mean results for each recommender shown as percentages out
of the largest possible result. These results show that the baseline recommender
generates a large number of recommendations, nearly half of all possible rec-
ommendation pairs that can be generated. Consequently, this results in large
recall. In contrast, the career transition job recommender generates only one
fourth as many recommendations but maintains a high level of recall. When
the cosine recommender is used to supplement the number of recommendations
given by the career transition job recommender, recall increases. Across all three
recommenders, almost all users receive recommendations and nearly all jobs are
recommended to at least one user.

More pertinent is the recall when the recommendations are limited to the top
N by score. Table 3 and Fig. 4 show the increase in recall as N increases. The first
plot shows that when the number of recommendations is limited to N < 40 the
career transition recommender with cosine supplementation has a higher level of
recall than the baseline recommender. This is a strong result, as being able to
make accurate recommendations is an important feature of a job recommender
system. The second plot shows the benefit of cosine supplementation when N
is large. However, for values of N < 20 there is no difference between the two
recommenders.

Finally, using paired-sample t-tests we compared the recall results for each
recommender at various levels of N . The results showed a significant difference
(P < 0.01) in recall for the career transition job recommender compared to the
baseline recommender.

Fig. 4: Recall for Top-N Recommendations.

4.2 Module and Sub-component Evaluation

Table 4 breaks down the performance of the recommender by modules and mod-
ule combinations. These results provide insight into how each component con-
tributes recommendations, recall, and ranking to the overall system.

The first section of this table breaks down the recommender by module. The
results for the title transition module show that for each user, on average, 10%
of the job advertisements are recommended and for 4 in every 10 users one rec-
ommendation will be correct. This is a high level of recall for a relatively small
number of recommendations generated. The second module, title description
matching, produces even fewer recommendations per user but has an impressive
recall for so few recommendations. In contrast, the description-description mod-
ule produces a very large number of recommendations and, despite having the
largest recall, the ratio of recommendations to recall is small.

The second section of Table 4 explores combinations of modules. It shows that
the combination of the title transition module and the title description matching
module generates more recommendations and higher recall than the two modules
in isolation. This suggests that the individual modules are generating different
recommendations, consequently the top-N recall results for this module also
show improvement after the combination of these two modules.

The second combination of title transtion with description-description match-
ing shows a large reduction in the number of recommendations generated by the
description-description matching module in isolation as a consequence of the
signal limit being applied when combining recommendations. Despite this, the
top-N recall for the combinations of these modules is an increase over their indi-
vidual performance. This again shows that despite producing fewer recommen-
dations than the individual description-description matching module, the rec-

Table 4: Module and Module Combinations.
All Recommendations Top-N Recommendations

Generated Recall N = 5 N = 10 N = 20 N = 40

Individual Modules:

Title Transition (TT) 10.0% 40.9% 15.4% 19.4% 24.0% 29.2%

Title Description (TDM) 2.9% 17.0% 5.4% 7.6% 10.4% 13.0%

Description-Description (DDM) 50.0% 79.3% 26.2% 31.1% 36.6% 43.0%

Module Combinations:

TT + TDM 11.1% 44.0% 16.9% 21.2% 26.0% 31.0%

TT + DDM 12.4% 50.7% 28.7% 33.3% 37.5% 41.7%

TDM + DDM 17.1% 50.7% 26.4% 30.3% 35.3% 39.0%

Overall:

Career Transition 13.3% 52.1% 29.5% 34.0% 38.3% 42.8%

Career Transition + Cosine 30.6% 65.8% 29.5% 34.1% 38.5% 43.3%

Fig. 5: Recall for Top-N Recommendations by Module.

ommendations that are retained after multiplexing are of high value. The third
combination, title description matching with description-description matching,
also shows a decrease in the number of recommendations generated and the
same level of recall as the previous combination. However, when considering
top-N recall, there is a minor reduction compared to the individual results for
the description-description matching module.

Finally, the third section of the table shows the combination of all three
modules into the final recommender and the addition of cosine supplementation
on the final results. Fig. 5 shows the individual results for each module and how
the combination of all three is higher than each in isolation.

5 Related Work

Two deployed job recommender systems are CASPER [1] and Proactive [5].
CASPER is a two-stage search engine based recommendation system. First,
similarity metrics are used to find job advertisements that are relevant to a
candidate’s search term. Second, a personalised ranking of the returned search
results is made based upon the candidate’s learned profile which includes prior
likes and dislikes for similar jobs. This enables two candidates who input identical
search terms to see the returned search results in a different personalised order.

Learned candidate profiles are central to CASPER’s personalisation service.
Each profile is made up of metadata (e.g., location, salary, skills) from the job
ads that the user has previous viewed. Similarity between the learned user pro-
file and search results is then measured through a nearest neighbour classifier.
An evaluation of different similarity metrics has been made through generated
artificial candidate profiles [1].

The candidate profiles used for recommendation in the Proactive system are
quite different from CASPER. Candidates using Proactive build a collection of
liked jobs. These liked jobs are then matched to job advertisements to generate
a list of recommended jobs. To match jobs, Proactive extracts metadata from
job descriptions and uses seven job case facets (e.g., role, industry, company
size, location, qualifications, experience) to determine a similarity (again using a
nearest-neighbour classifier) to a job for recommendation. This approach allows
candidates to control which recommendations are generated based on their direct
action of liking a particular job. Unfortunately, the Proactive system has been
limited to IT jobs and evaluated on a very small set of users [6].

While both CASPER and Proactive demonstrate that term-based profile
matching can be used to filter or display relevant job ads to candidates, it remains
a relatively crude approach. Recommendations given by either system may be
irrelevant (in the case of CASPER’s learned profiles) or of poor quality, for
instance, in situations where the candidate may have a high desire for a particular
job but would be an unsuitable employee.

6 Conclusion and Future Work

In this paper we have considered the problem of job recommendation, suggesting
suitable jobs to users based on their profiles. We considered a baseline method
treating users and jobs as documents, where suitability is measured using co-
sine similarity, and a model that incorporates job transitions trained on the
career progressions of a set of users. We showed that the job transition model
outperforms cosine similarity. Furthermore, a cascaded system combining career
transitions with cosine similarity generates a larger number of recommendations
of a similar quality.

Given a better dataset, our recommendation methods could be extended
by including location-based job filtering, using temporal information associated
with the length of time a user has held a certain job level (c.f. Wang et al. [11]),
and incorporating users’ qualifications and skills.

Acknowledgements

This work was funded by Smart Services Cooperative Research Centre. We would
like to thank Infosys, especially Jai Ganesh, for their support of this research.

References

1. Bradley, K., Smyth, B.: Personalized Information Ordering: A Case Study in Online
Recruitment. Knowledge-Based Systems 16, 269–275 (2003)

2. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling
and User-Adapted Interaction 12, 331–370 (2002)

3. Cai, X., Bain, M., Krzywicki, A., Wobcke, W., Kim, Y.S., Compton, P., Mahidadia,
A.: Collaborative Filtering for People to People Recommendation in Social Net-
works. In: Li, J. (ed.) AI 2010: Advances in Artificial Intelligence. Springer-Verlag,
Berlin (2010)

4. Krzywicki, A., Wobcke, W., Cai, X., Mahidadia, A., Bain, M., Compton, P., Kim,
Y.S.: Interaction-Based Collaborative Filtering Methods for Recommendation in
Online Dating. In: Chen, L., Triantafillou, P., Suel, T. (eds.) Web Information
Systems Engineering – WISE 2010. Springer-Verlag, Berlin (2010)

5. Lee, D.H., Brusilovsky, P.: Fighting Information Overflow with Personalized Com-
prehensive Information Access: A Proactive Job Recommender. In: Proceedings of
the Third International Conference on Autonomic and Autonomous Systems, p. 21
(2007)

6. Lee, D.H., Brusilovsky, P.: Proactive: Comprehensive Access to Job Information.
Journal of Information Processing Systems 8, 721–738 (2012)

7. Malinowski, J., Keim, T., Wendt, O., Weitzel, T.: Matching People and Jobs: A
Bilateral Recommendation Approach. In: Proceedings of the 39th Hawaii Interna-
tional Conference on System Sciences (2006)

8. Pizzato, L., Rej, T., Akehurst, J., Koprinska, I., Yacef, K., Kay, J.: Recommending
People to People: The Nature of Reciprocal Recommenders with a Case Study in
Online Dating. User Modeling and User-Adapted Interaction, 23, 447–488 (2013)

9. Rafter, R., Bradley, K., Smyth, B.: Automated Collaborative Filtering Applications
for Online Recruitment Services. In: Proceedings of the International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 363–368 (2000)

10. Rafter, R., Bradley, K., Smyth, B.: Personalised Retrieval for Online Recruitment
Services. In: Proceedings of the 22nd Annual Colloquium on Information Retrieval
(2000)

11. Wang, J., Zhang, Y., Posse, C., Bhasin, A.: Is It Time for a Career Switch? In:
Proceedings of the 22nd International World Wide Web Conference, pp. 1377–1388
(2013)

