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The task allocation problem with pickup and delivery is an extension of the
widely studied multi-robot task allocation (MRTA) problem which, in general,
considers each task as a single location to visit. Within the robotics domain
distributed auctions are a popular method for task allocation [4]. In this work,
we consider a team of autonomous mobile robots making deliveries in an office-
like environment. Each robot has a set of tasks to complete, and each task
is composed of a pickup location and a delivery location. The robots seek to
complete their assigned tasks either minimising distance travelled or time taken
according to a global team objective. During execution, individual robots may
fail due to malfunctioning equipment or running low on battery power.

A common approach for reacting to task execution delays and changes in the
system is to repeatedly auction and redistribute tasks that are not completed,
either at certain time intervals or upon each single task completion [6,12]. Re-
allocating and replanning tasks can be costly in terms of computational power
and time. While arbitrary replanning may not be the most efficient approach,
knowing when to reallocate and how much of the system should be reallocated
is a challenging problem.

In this paper we consider the reallocation of a failed robot’s assigned tasks
to the remaining operating robots using sequential single-item auctions (SSI
auctions) [11,8]. We consider two different approaches to the reallocation of
tasks amongst the remaining operating robots: a) partial reallocation in which
the failed robot’s uncompleted tasks are auctioned—this results in the remaining
operating robots modifying their existing task execution plans to incorporate
additional tasks—b) global reallocation of the failed robot’s uncompleted tasks
plus all remaining tasks yet to be picked up. This results in a re-assignment of the
task set across all remaining operating robots and new task execution plans to
be generated. Despite a global reallocation requiring more computation, inter-
robot communication and time, it can be expected that this approach would
produce lower distance and/or task execution times as more task assignment
combinations are considered. However, our empirical results show that partial
allocations, on average, produce final results that are equivalent to the results
for global reallocation. The aim of this paper is to explore this surprising result.
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1 Problem Definition

We expand the problem formalisation given by Koenig et al. [9] to include tasks
with pickup and delivery. Given a set of robots R = {ry,...,r,} and a set of
tasks T' = {t1,...,t,}. A partial solution to the MRTA problem is given by any
tuple (T}, ..., T, ) of pairwise disjoint task subsets: T;,, C T' with T, N T, =
0,4 #4,Vi=1,...,m. Each task subset T}, is then assigned to a single robot
r; € R. To determine a complete solution we need to find a partial solution
where all tasks are assigned to task subsets: (T, ... Ty, ) with U, cr Ty, =T.

When a robot fails, we remove it from the set of operating robots: R
R\{rai}. As a consequence of this, if T, # 0, the previous complete solution
to the problem U,,crT,, = T no longer holds. A new complete solution can
be found by re-assigning the set of tasks assigned to the failed robot T, to
the remaining operating robots. We wish to investigate if it is better for these
remaining operating robots to keep their existing commitments or to start from
scratch.

Multi-robot routing is considered the standard testbed for MRTA problems
[4]. For tasks with pickup and delivery, the structure of each task ¢ is a tuple
t = (Ip,lq) of a pickup location [, and a delivery location ;. We consider a robot
to be executing a task once it has visited its pickup location up until it reaches
its delivery location. Robots may have capacity constraints in the number of
tasks they are able to execute at any moment in time. This is representative of
real robots which may have a fixed maximum number of items they can carry.

Each robot always has private knowledge of its current location and can cal-
culate the cost A\ to travel between locations. The cost to travel between any
two locations is equal across all robots. The robot cost A, (7),) is the mini-
mum cost for an individual robot r; to visit all locations T}, assigned to it.
There can be synergies between tasks assigned to the same robot, such that:
Ar, ({t3) + A ({t'}) # A, ({8} U {t'}). This allows robots, when calculating bids
for additional tasks, to consider the cost of completing additional tasks relative
to their current commitments. A positive synergy is when the combined cost for
a robot to complete two tasks is lower than the individual costs for the robot to
complete each task: A, ({t} U{t'}) < A, ({t}) + A\, ({t'}).

Team objectives are used to provide additional guidance in the search for
solutions to the task allocation that meet certain criteria. Lagoudakis et al.
discusses team objectives in detail and their application to MRTA [11]. In this
work we use two commonly considered team objectives:

MiniSum min ), p A (75,) that is to minimise the sum of the paths of all
robots in visiting all their assigned pickup and delivery locations.
MiniMax min max,,cgAr, (Tr,) that is to minimise the maximum distance any

individual robot travels.

2 Related Work

Market-based distributed auction algorithms are popular in the robotics com-
munity for solving MRTA problems [4, 7]. Common auction types include com-
binatorial auctions, parallel auctions and sequential auctions. In NP-complete
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single-round combinatorial auctions [1] each robot bids on all subsets of the
tasks on offer. This generates optimal allocations of tasks to robots. However, in
most scenarios, the computation tends to be intractable and is generally not fea-
sible for any but the most simple problems. In parallel auctions, robots generate
bids for each task in isolation, with no consideration given to inter-task syner-
gies, and the auctioneer then allocates the tasks all at once. The computational
complexity is minimal but solutions are often extremely sub-optimal [8].

Sequential single-item auctions which allocate tasks over multiple rounds are
a popular middle ground [11,8]. In each auction round, each robot submits a
bid for a task of its choosing, and one task is awarded to the lowest bidder. A
key strength of SSI auctions is their ability to build upon inter-task synergies
during each task bidding round. However, when robots have few tasks allocated,
robots bidding for tasks using SSI auctions have a greedy bias towards tasks that
are close to their initial locations. This can see two tasks, that in an optimal
solution would be allocated to one robot, split and allocated to two different
robots. Previous work on repeated auctions has demonstrated the benefits of
reallocating tasks during execution [12,13]. Additionally, a variety of further
improvements and extensions to SSI auctions have been studied which trade off
allocation time against overall team costs [7].

2.1 Robot Failure and Task Reallocation
A variety of approaches for task reallocation upon robot failure have been stud-
ied. Botelho and Alami [2] consider the problem of robot failure in Smith’s
contract net protocol (CNP) [14]. In this work, when a robot is about to fail, it
sends out an emergency distress message to all other robots and one robot will
come to its aid and complete the failed robot’s task. However, in this work no
inter-task synergies are explored as each additional task is allocated only after
the completion of a previous task. This approach also means that, regardless of
robot failure, an optimal solution to the task allocation problem is unlikely to be
achieved. Dias et al. [3] consider various forms of robot failure: communication,
partial robot malfunction, and robot death. Their approach to task reallocation
is to do a partial reallocation of tasks in the system from the robot that has
failed. This is followed by a global reallocation of all tasks at a later moment in
time. Gerkey and Mataric [6] deal with robot failures by repeatedly auctioning
all uncompleted tasks at set time intervals. While this solution works where tasks
are single points, it does not work for tasks with pickup and delivery. Robots
may be halfway through the transport of one or more tasks and they would not
be able to switch to a different task. Nanjanath and Gini [12] consider repeated
auctions upon robot delay. Their approach is that, upon each task completion,
all uncompleted tasks across all robots are offered up for reallocation.

Robot failure is closely related to the problem of dynamic task insertion.
In dynamic task insertion, additional tasks are inserted into a running system
resulting in a need to reallocate tasks. Previous work by Schoenig and Pagnucco
[13] has considered SSI auctions with dynamically inserted tasks and compared
the costs of robots bidding only for the new task versus a full new auction of all
uncompleted tasks. Their results show, despite a large trade-off in computation
time, a global reallocation of tasks gives the best results.
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2.2 Tasks with Pickup and Delivery

In the field of transport logistics, Fischer, Miiller and Pischel apply the CNP to
transportation scheduling with fixed time windows [5]. In this work trucks bid for
tasks from a central controller and can also make one-for-one swaps with other
trucks before they begin to execute their plans. During the execution of plans,
the trucks may face traffic delays and, as such, they can locally replan their
routes or auction their uncompleted tasks. Their results show that global real-
location of uncompleted tasks provides a large reduction in distance travelled.
However, Kohout and Erol argue that Fischer, Miiller and Pischel’s generation of
an initial allocation is poor and therefore global reallocation will produce much
better results than local replanning [10]. In their analysis they study problems
where multiple items can be transported together and additional jobs are an-
nounced sequentially. When a new job is announced, each vehicle bids for the
job according to the cost of completing the additional job relative to their exist-
ing commitments. To avoid problems where inserting additional tasks has large
impacts on the completion time of other tasks, upon each task insertion, already
scheduled tasks are permitted to be reallocated to other vehicles. In their empir-
ical analysis they compare this approach to a popular operations research based
approach [15]. Overall, they show that their distributed approach is statistically
equivalent to this centralised technique.

3 Task Reallocation upon Robot Failure

When a robot detects a problem, for instance, low battery power, it should let
other robots know and safely shutdown. A failing robot broadcasts a message
to all other operating robots containing its present location and the list of its
uncompleted tasks. Any tasks that have not been picked up are able to be
immediately auctioned. However, tasks that are under execution when the robot
fails must be modified. Because the robot has already visited the pickup location
of these tasks, other robots must travel to the location of the failed robot and
collect the task from it. To do this the pickup location [, of all initialised tasks

T © Tpy,,, must be updated to the present location of the failed robot I, =
ly;,;,- During reallocation robots continue executing their current task.

A partial reallocation only auctions the task set assigned to the failed robot.
The remaining operating robots calculate the bids for these tasks taking into con-
sideration their existing task commitments. Using the cheapest insertion heuris-
tic, each robot’s existing task execution plan is modified to include any additional
task assignments. This approach allows robots to consider inter-task synergies
between their existing commitments and tasks they are bidding for that may
not have been considered during the previous allocation. For instance, if in a
previous allocation the task ¢ € T;., ,, was assigned during the very first round
of bidding, no other robot would have been able to consider its synergy with
other tasks. Partial reallocations also, generally, have smaller communication
overheads than a global reallocation of all tasks. In a distributed SSI auction
the total number of messages sent between all robots is |T'| * |R|?. The number
of tasks for auction in a partial reallocation will always be |T; <|T.

fail
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A global reallocation considers all of the tasks from the failed robot and all
uninitialised tasks across all remaining operating robots T «+ T, air U T\Tiniz-
Uninitialised tasks are tasks where a robot has not visited the pickup location
of the task. Each robot retains the tasks that it has picked up 75 <+ T, .,
When calculating bids for additional tasks, the completion of these retained
tasks is taken into consideration. It is important to note that, the previous task
allocations were generated under conditions and constraints in the number of
robots available and the tasks available for bidding in each round which have
now changed. Allowing robots to give up tasks previously allocated under these
prior circumstances enables them to completely regenerate their plans and con-
sider previous unexplored inter-task synergies. As a result, we expect that this
approach will generate solutions with lower costs than partial reallocations.

4 Experiments

To contrast the differences between partial and global reallocations, we simulate
an office-like environment with 16 rooms (in a 4x4 grid), each containing four
interconnecting doors that can be independently opened or closed to allow or re-
strict travel between rooms. This environment has become the standard testbed
in recent literature [9]. In each experiment, the doors between different rooms
and the hallway are either open or closed. We test on 25 randomly generated
configurations of opened and closed doors with each robot starting in a different
random location. Robots can only travel between rooms through open doors and
they cannot open or close doors. However, it is guaranteed that there is at least
one path between each room and every other room. For each configuration we
test with 10 identical robots, 60 tasks, and from two to eight robot failures. We
compare these results to an initial cost which is the cost to complete all tasks
without any robot failures or reallocations of tasks. Robots fail at random in-
tervals after arriving at a pickup or dropoff location. We test with the MiniSum
and MiniMax team objectives and with capacity constraints of 1, 3, and 5.

In both reallocation approaches the total distance travelled decreases as the
capacity constraint is increased. This is not surprising as, the larger the capacity
constraint, the more flexibility robots have in executing multiple tasks in unison.
We also note, as the number of robots failing increases, the distance required for
the remaining robots to travel increases.

To further analyse these results we looked at the distribution of the final
costs for both reallocation techniques. Fig. 1 is a plot of the distribution of one
standard deviation around the mean for the capacity constraint of one. The
other two capacity constraints tested follow a similar trend. One can observe in
this plot that, as the number of failed robots increases, the standard deviation
becomes much larger. This indicates that in some of the configurations tested
the final costs remained low despite the large number of robot failures, however,
in other configurations the final costs became extremely large. When the number
of robot failures remains less than four there is very little difference in means and
distributions between partial and global reallocations. However, as the number of
robot failures becomes large there is a clear benefit in using partial reallocations.
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Fig. 3: Reallocation example with three robots and six tasks. ry is travelling to
the left, ro and 73 to the right. Tasks are point locations I, = I4.

For the MiniMax team objective, again, there are trends that, as the ca-
pacity constraint is increased, the cost decreases and, as the number of failed
robots increases, the cost increases. The plot in Fig. 2 shows one standard de-
viation around the mean for the MiniMax team objective with a capacity of
five initialised tasks at any one time. This plot shows a different distribution
to that of the MiniSum team objective. Our first observation is that the results
for both partial and global reallocations completely overlap. At no point does
one technique offer an advantage over the other. Our second observation is that
the standard deviation remains small in all but the extreme case of eight failed
robots. Our logs suggest this is due to robots with lower costs than the robot
with the maximum cost taking on additional tasks from failed robots without
impacting the overall maximum cost.

Overall, these results are surprising. Our expectations were that global re-
allocation would outperform partial reallocation. For instance, consider three
robots travelling along a horizontal line. The first robot is travelling to the left,
the middle robot to the right, and a third robot also travelling to the right (Fig.
3). The first robot then fails. In a partial reallocation the middle robot would
need to continue doing tasks to its right and then complete the tasks on its left.
However, in a global reallocation the middle robot could give up its tasks to the
right and travel to the left and complete the failed robot’s tasks. In this situation
you would expect that the global reallocation would result in a smaller task cost
than the partial allocation.
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Table 1: Mean MiniSum Team Objective Computation Time (s) (percentage
increase in time after reallocation compared to initial time in brackets).
lCapaCity‘Failures‘lnitial Allocation‘Partial Reallocation‘Global Reallocation‘

1 2 209 250 (19.3%) 330 (57.6%)
1 4 209 265 (25.9%) 439 (110.0%)
1 6 209 280 (33.3%) 510 (143.0%)
1 8 209 302 (44.3%) 579 (176.4%)
3 2 211 261 (23.8%) 339 (160.9%)
3 4 211 284 (36.1%) 419 (100.8%)
3 6 211 314 (48.4%) 493 (133.5%)
3 8 211 340 (61.3%) 553 (162.4%)
5 2 213 269 (25.3%) 343 (159.4%)
5 4 213 307 (44.2%) 433 (103.1%)
5 6 213 358 (68.7%) 509 (140.0%)
5 8 213 398 (86.7%) 615 (188.9%)

Finally, we consider the overall computation time required for generating an
initial allocation and for reallocation. Table 1 presents the mean timings for the
MiniSum team objective (we omit the MiniMax team objective data as it is
nearly identical). These results show that the time required for partial reallo-
cation is much lower than for global reallocation. We note that, for the initial
allocation, the capacity constraint has almost no impact on the time required.
For partial reallocation, as the capacity constraint increases, there is a smaller
increase in the time taken, however, this trend is not seen in global reallocation.
As the number of failed robots increase, both reallocation techniques require
more computation time. In particular, the time required for global reallocation
grows at a very rapid rate as the number of failed robots increases. Overall, from
this data and the previous results, we can conclude that partial reallocations are
a viable technique for handling robot failure. Their resultant costs are at least
equal to global reallocation and they have much faster computation times.

5 Discussion

Our experimental results are unexpected and appear to contradict previous re-
sults on reallocation of tasks using auctions. We can classify previous work into
two groups, the first being work that presents algorithms for task reallocation
[2,3,6,12], and the second dealing with task reallocation upon new task inser-
tion [13,16]. We are unaware of previous work comparing partial and global
reallocation of tasks using repeated auctions.

In our related work section we stated that dynamic task insertion is a very
similar problem. Naively, one can assume that adding a new task to the set
of tasks: T < T U {tnew} and removing a robot from the set of robots: R +
R\{rsqi} would affect the task allocation problem in the same way as the com-
plete solution: U,,erT,, = T relies on both R and T'. However, a key difference
between dynamic task insertion and robot failure is the location of the tasks for
reallocation. Most dynamic task insertion approaches assume that the task lo-
cation is random. However, in the case of a robot failure, despite a robot failure
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occurring at random, the tasks for auction are not randomly distributed. They
are generally geographically close and also contain tight inter-task synergies.

6 Conclusion

This work has studied task reallocation in a robot team upon the failures of
teammates. We explored two techniques for task reallocation: partial realloca-
tion which considers only a subset of the total tasks in the system; and, global
reallocation which considers almost all tasks in the system. Our empirical evalua-
tions show that, despite global reallocation considering more inter-task synergies,
partial reallocations, on average, performed at least as well. Furthermore, partial
reallocations require much less computation time.
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